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1 Optical Interactions in the Context of Nano Optics :
Near-field optics

• We consider a dipole in front of a perfectly conductive interface. The boundary value
problem can be solve using image charges. In other words, the charges of the dipole
induce opposite charges in the perfect conductor as shown in the figure below.

Figure 1: Dipoles near a perfect mirror with orientation perpendicular and parallel to the in-
terface. The dashed arrows represent the image dipoles.

The modification of the emission rate can be easily obtained by calculating the power
radiated by the real and image dipoles P , normalized by the power emitted by the real
dipole in free space P0, using the fact that Γ/Γ0 = P/P0 (see lecture notes). The results
depends on the dipole orientation and it reads
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where ⊥ and ‖ refer to the dipole orientations with respect to the interface, k = ω/c is
the wave-vector and z is the distance of the real dipole from the perfect conductor.

When z → 0, Γ⊥/Γ0 → 2, because the two dipoles oscillate in phase, whereas Γ‖/Γ0 → 0,
because the two dipoles oscillate in opposite phase. The term exp(2ikz) is the interference
between the two dipoles, which depends on 2z, i.e. the distance between real and image
charges. When z → ∞, the decay rates approach the value Γ0, but the perpendicular
dipole approaches it faster, since it does not contain the far-field term 1/(2kz).

• In free-space, the partial local density of states ρµ is identical to the total density of states
ρ. To show this, prove that[
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where
↔
G0 is the free-space dyadic.

In this problem we would like to prove[
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The free space dyadic Green function is given by
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.

By using
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Now we have
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• Two molecules, fluorescein (donor) and alexa green 532 (acceptor), are located in a plane
centered between two perfectly conducting surfaces separated by the distance d. The
emission spectrum of the donor (fD) and the absorption spectrum of the acceptor (σA)
are approximated by a superposition of two Gaussian distribution functions. Use the fit
parameters from Section 8.6.2 in the text book Principles of Nano-Optics (Second edition)
by Lukas Novotny.

1. Determine the Green’s function for this configuration.

2. Calculate the decay rate γ0 of the donor in the absence of the acceptor.

3. Determine the transfer rate γD→A as a function of the separation R between donor
and acceptor. Assume random dipole orientations.

4. Plot the Förster radius R0 as a function of the separation d.

Two molecules, fluorescein (donor) and alexa green 532 (acceptor), are located in a plane
centered between two perfectly conducting surfaces separated by the distance d (see the
figure).
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1. To find the Green’s function one can use angular spectrum representation for a dipole.

eikr

r
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Then
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where kzd = πn and as a result kz = πn/d. We also have
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where eikzz + e−ikzz = 2i sin kzz.

2. The decay rate γ0 of the donor in the absence of the acceptor is related to

γ ∝ Im[Tr
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1
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where

k2‖ = k2x + k2y,

dkx dky = k‖ dΦ dk‖,

i(kxx+ kyy) = ik‖ρ.

Thus we have
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
Since sin(πnz/d) for z = 0, it makes the second integral zero. At the end we have
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d
)dk‖,

which contains only the terms above cutoff (the decay rate is determined by the cavity
modes).

3. The transfer rate γD→A as a function of the separation R between donor and acceptor
is

γD→A
γ0

=
1

R6

ˆ ∞
0

f0(ω)σ(ω)

n4(ω)ω4
T (ω)dω,

where

T (ω) = 16π2k4R6

∣∣∣∣nA ·↔G · nD∣∣∣∣2 .
Since the absolute value for random orientation is equal to Tr[

↔
G], as a result we have
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2

.

We remark that here the integration includes both near (evanescent) and far field contri-
butions of k‖.

4. The Förster radius R0 is related to transfer rate
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R
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