1 Radiation Reaction

The field acting back on the dipole due to radiation is called \vec{E}_{self} and it can be seen as a friction.

$$\vec{F}_R = q\vec{E}_{\text{self}}.\tag{1}$$

The Abraham Lorentz back action can be written as

$$\vec{F}_R = \frac{q^2 \vec{r}}{6\pi\epsilon_0 c^3},\tag{2}$$

where $\vec{\mu} = q\vec{r}$ is the electric dipole moment,

$$\vec{\mu} = q\vec{r} \implies \vec{\mu} = \vec{\mu}_0 e^{-i\omega t},$$

hence

$$\vec{\vec{r}} = \frac{\vec{\mu_0}}{q} (-i\omega)(-i\omega)(-i\omega)e^{-i\omega t},$$
$$q \vec{\vec{r}} = i\omega^3 \vec{\mu}.$$

Thus we can write \vec{E}_{self} as follows

$$\vec{E}_{\rm self} = \frac{i\omega^3\vec{\mu}}{6\pi\epsilon_0c^3} = \frac{ik^3}{6\pi\epsilon_0}\vec{\mu}.$$

The dipole moment is induced by the polarizability times the applied electric field. The latter is the sum of the external electric field \vec{E}_0 and of the back action due to radiation \vec{E}_{self} , i.e.

$$\vec{\mu} = \alpha \Big[\vec{E}_0 + \vec{E}_{\text{self}} \Big].$$

Using the expression for $\vec{E}_{\rm self}$ we can write

$$\vec{\mu} = \alpha \Bigl[\vec{E}_0 + \frac{ik^3}{6\pi\epsilon_0} \vec{\mu} \Bigr],$$

hence

$$\vec{\mu} = \frac{\alpha}{1 - \left[\frac{ik^3}{6\pi\epsilon_0}\alpha\right]}\vec{E_0},$$

which leads to an expression for the effective polarizability with radiative corrections

$$\alpha_{\rm eff} = \frac{\alpha}{1 - \left[\frac{ik^3}{6\pi\epsilon_0}\alpha\right]}.$$

2 Polarizability of a Classical Point Like Radiator

Consider a dipole of charge q and dipole moment $\vec{\mu}$. The equation of motion under an applied electric field $\vec{E} = \vec{E}_0 e^{-i\omega t}$ reads

$$\ddot{\vec{r}} + \Gamma' \dot{\vec{r}} + \tau \, \dddot{\vec{r}} + \omega_0^2 \vec{r} = \frac{e}{m} \vec{E}_0 e^{-i\omega t},$$

where Γ' represents non-radiative damping, ω_0 is the resonance frequency and $\Gamma = \tau \omega_0^2$ is the radiation damping. By comparing this expression with the Abraham Lorentz back action (see Eq. (2)), we get the expression for the **Radiative Decay Rate** of a classical oscillating dipole

$$\Gamma = \frac{2e^2\omega_0^2}{3mc^3}.$$

The Steady State Solution can be written as follows

$$\vec{\mu} = \vec{\mu}_0(\omega) e^{-i\omega t - \Gamma_{\rm tot}},$$

where $\Gamma_{\text{tot}} = \Gamma' + \frac{\omega^2}{\omega_0^2} \Gamma$ is the total decay rate. Knowing that $\vec{\mu} = -e\vec{r}$, we get

$$\vec{\mu}_0(\omega) = -\frac{e^2}{m} \frac{\vec{E}_0}{\omega_0^2 - \omega^2 - i\omega\Gamma_{\rm tot}}$$

Defining $\Delta = \omega - \omega_0$ as the **Detuning** and considering the situation close to the **resonance** condition: $\Delta \ll \omega_0$, we obtain

$$\vec{\mu}_0(\omega) \simeq -\frac{e^2}{m\omega_0} \; \frac{\vec{E}_0}{2\Delta - i\Gamma_{\rm tot}},$$

thus

$$\alpha_{\rm CL} = -\frac{e^2}{m\omega_0 \ [2\Delta - i\Gamma_{\rm tot}]},$$

$$\vec{\mu}_0(\omega) = \alpha_{\rm CL} \vec{E}_0.$$

We now replace $\frac{e^2}{m\omega_0}$ with a term containing Γ , i.e.

$$\frac{e^2}{m\omega_0} = \frac{3}{2}\Gamma\frac{1}{k^3}.$$

The Polarizability of a Classical Dipole can thus be written as

$$\alpha_{\rm CL} = -\frac{3}{2} \frac{1}{k^3} \frac{\Gamma}{2\Delta + i\Gamma_{\rm tot}}.$$

The complex number represents the presence of damping (radiative and non-radiative).

3 Polarizability of a Two-Level System

We start from the Hamiltonian of a TLS interacting with an applied electric field \vec{E} through the dipole operator $\hat{\vec{d}}$ in the semi-classical theory

$$\hat{H} = \hat{H}_{\text{TLS}} - [\hat{\vec{d}} \cdot \vec{E}],$$

where

$$\hat{H}_{\rm TLS} = \begin{pmatrix} E_2 & 0\\ 0 & E_1 \end{pmatrix} = \frac{\hbar\omega_0}{2}\hat{\sigma}_z,$$

where $\omega_0 = \frac{E_2 - E_1}{\hbar}$ is the transition frequency and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is the Pauli matrix. Similarly, we can sue $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ to write

$$\hat{d} \cdot \vec{E} = \begin{pmatrix} 0 & d_{12} \ E_0 \ e^{-i\omega t} \\ d_{21} \ E_0 \ e^{-i\omega t} & 0 \end{pmatrix} = \hbar V \ e^{-i\omega t} \hat{\sigma}_x,$$

where V is the **Rabi Frequency**, $V = -d_{12}\frac{E_0}{\hbar}$.

To solve the problem we can use the **Heisenberg Equations of Motion**

$$\dot{\hat{A}} = \frac{i}{\hbar} [\hat{H}, \hat{A}],$$

which we apply to σ_z and σ_x using the **Pauli Matrices**

$$\sigma_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$
$$\sigma_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$
$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$
$$\sigma_{y} = \begin{pmatrix} 0 & -i \\ +i & 0 \end{pmatrix}.$$

Also,

$$\sigma_{+} = \frac{\sigma_{x} + i\sigma_{y}}{2},$$
$$\sigma_{-} = \frac{\sigma_{x} - i\sigma_{y}}{2}.$$

For the oscillating dipole have

$$d_{12}(t) \simeq d_{12}(0)e^{i\omega_0 t}.$$

In the coupling term using the **Rotating Wave Approximation** we can neglect the terms oscillating with fast frequency components, i.e. $\omega + \omega_0$. Hence we get

$$\dot{\hat{\sigma}}_{-} = (i\Delta - \Gamma_2)\hat{\sigma}_{-} + \frac{1}{2}iV\hat{\sigma}_z,$$
$$\dot{\hat{\sigma}}_z = -i\Gamma_1\hat{\sigma}_z + iV[\hat{\sigma}_{-} - \hat{\sigma}_{+}]$$

and so on....

Here, Γ_1 and Γ_2 are the **Damping Rates**: Γ_1 is reducing the population and Γ_2 is reducing the dipole moment (coherence). Moreover, the relationship between these two damping terms is

$$\Gamma_2 = \frac{\Gamma_1}{2} + \Gamma_2^*,$$

where Γ_2^* is an additional **Dephasing Rate** for the coherence. Neglecting non-radiative damping, Γ_1 is given by the **Spontaneous Decay**, i.e.,

$$\Gamma_1 = \frac{d_{12}^2 \omega_0^3}{3\pi\epsilon_0 \hbar c^3},$$

where d_{12} is the amplitude of the dipole moment.

We can write the **Steady State Solution** of the expectation values $\langle \rangle$ of the operators as

$$<\sigma_{-}>^{ss}=\frac{V(\Delta-i\Gamma_{2})}{2\left[\Delta^{2}+\ \Gamma_{2}^{2}+V^{2}\ \frac{\Gamma_{2}}{\Gamma_{1}}\right]},$$

$$< \rho_{22} >^{ss} = \frac{1}{2} \left[1 + <\sigma_z >^{ss} \right] = \frac{V^2 \Gamma_2}{2 \Gamma_1 \left[\Delta^2 + \Gamma_2^2 + V^2 \frac{\Gamma_2}{\Gamma_1} \right]}.$$

Because $d_{12} < \sigma_{-} >^{ss}$ represents the expectation value of the dipole moment, the polarizability of a TLS can be written as

$$\alpha_{\rm TLS} = - \frac{d_{12}}{\frac{1}{2} \epsilon_0 E_0},$$

where the 1/2 terms comes from the fact that

$$E_0 \cos \omega t = \frac{1}{2} \Big[e^{i\omega t} + e^{-i\omega t} \Big].$$

Hence

$$\alpha_{\rm TLS} = - \frac{d_{12}^2}{\epsilon_0 \hbar} \frac{\Delta - i\Gamma_2}{\Delta^2 + \Gamma_2^2 + V^2 \frac{\Gamma_2}{\Gamma_1}}.$$

By replacing d_{12}^2 with Γ_1 we obtain

$$\alpha_{\rm TLS} = -\frac{3\pi}{k^3} \frac{\Gamma_1[\Delta - i\Gamma_2]}{\Delta^2 + \Gamma_2^2 + V^2 \frac{\Gamma_2}{\Gamma_1}},$$

while for a classical dipole we have

$$\alpha_{CL} = -\frac{6\pi}{k^3} \frac{\Gamma}{2\ \Delta + i\Gamma_{\rm tot}}.$$

The polarizability of the TLS exhibits parametric coupling with the applied electric field, because of the term V^2 in the denominator. For $V^2 \to +\infty \implies \alpha_{TLS} = 0$, i.e. under saturation the emission for a TLS is not related to the coherent oscillation of an induced dipole, but to the excited-state population (incoherent emission).

4 Coherent/Incoherent Emission of a Two Level System

The Total Emitted Power can be written (see lecture notes) as:

$$P_{\rm tot} = \hbar \ \omega \ \rho_{22}^{ss} \ \Gamma_1 = R_\infty \ \frac{I}{I_S} \frac{I}{1 + I_S},$$

where R_{∞} represents the emission rate at saturation and I_S is the saturation intensity, which can be related to V^2 (see previous question). The **Coherent Emission** can be related to the field created by the coherence, i.e.

$$E = \alpha_{\text{TLS}} E_0 \frac{k^2}{4\pi} \frac{e^{ikr}}{r} (\hat{n} \times \hat{x}) \times \hat{n}$$

where \hat{n} represents the observation direction and \hat{x} is the direction of the oscillating dipole. Therefore, the power related to the coherent part can be written as

$$P_{\rm coh} = \frac{\sigma_0}{4} \ \frac{\Gamma_1^2(\Delta^2 + \Gamma_2^2)}{\left[\Delta^2 + \Gamma_2^2 + V^2 \frac{\Gamma_2}{\Gamma_1}\right]^2} I,$$

where I is the **Intensity**, $I = \frac{1}{2} \frac{E_0^2}{Z}$, and σ_0 is the **Scattering Cross-Section**, $\sigma_0 = \frac{3\lambda^2}{2\pi}$, which is related to the polarizability (for $\Delta = 0$ and V = 0) through the expression $\sigma_0 = k^4 |\alpha_{\text{TLS}}|^2 / 6\pi$. By introducing the **Saturation** parameter

$$S = \frac{V^2 \Gamma_2}{(\Delta^2 + \Gamma_2^2)_1} \simeq \frac{I}{I_S},$$

we obtain,

$$P_{\text{tot}} = \frac{\hbar\Gamma_1}{2} \frac{S}{1+S},$$
$$P_{\text{coh}} = \frac{\hbar\Gamma_1}{2} \frac{\Gamma_1}{2\Gamma_2} \frac{S}{(1+S)^2}.$$

The incoherent power is simply the difference between the total and the coherent power,

$$P_{\rm incoh} = P_{\rm tot} - P_{\rm coh} = \frac{\hbar\Gamma_1}{2} \frac{S}{(1+S)^2} \left[S + 1 - \frac{\Gamma_1}{2\Gamma_2} \right].$$

For low excitation, the scattered power is like that of a **classical dipole**, i.e. $P_{\text{tot}} = P_{\text{coh}}$, whereas above saturation the power is incoherent, i.e. $P_{\text{tot}} = P_{\text{incoh}}$.

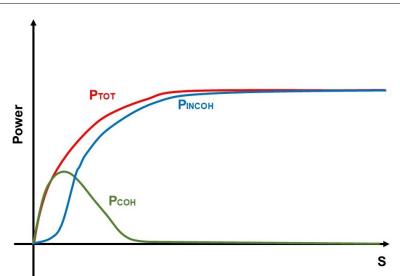


Figure 1: Power emitted by a TLS as a function of the saturation parameter S.

5 References

- 1. Principles of Nano-Optics (Second edition) by Lukas Novotny
- 2. Molecular scattering and fluorescence in strongly-confined optical fields by Mario Agio