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1 Radiation Reaction

The field acting back on the dipole due to radiation is called ~Eself and it can be seen as a
friction.

~FR = q ~Eself . (1)

The Abraham Lorentz back action can be written as

~FR =
q2
...
~r

6πε0c3
, (2)

where ~µ = q~r is the electric dipole moment,

~µ = q~r =⇒ ~µ = ~µ0e
−iωt,

hence

...
~r =

~µ0

q
(−iω)(−iω)(−iω)e−iωt,

q
...
~r = iω3~µ.

Thus we can write ~Eself as follows

~Eself =
iω3~µ

6πε0c3
=

ik3

6πε0
~µ.

The dipole moment is induced by the polarizability times the applied electric field. The latter
is the sum of the external electric field ~E0 and of the back action due to radiation ~Eself , i.e.

~µ = α
[
~E0 + ~Eself

]
.

Using the expression for ~Eself we can write

~µ = α
[
~E0 +

ik3

6πε0
~µ
]
,

hence

~µ =
α

1−
[
ik3

6πε0
α
] ~E0,

which leads to an expression for the effective polarizability with radiative corrections

αeff =
α

1−
[
ik3

6πε0
α
] .
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2 Polarizability of a Classical Point Like Radiator

Consider a dipole of charge q and dipole moment ~µ. The equation of motion under an applied
electric field ~E = ~E0e

−iωt reads

~̈r + Γ′~̇r + τ
...
~r + ω2

0~r =
e

m
~E0e
−iωt,

where Γ′ represents non-radiative damping, ω0 is the resonance frequency and Γ = τω2
0 is the

radiation damping. By comparing this expression with the Abraham Lorentz back action (see
Eq. (2)), we get the expression for the Radiative Decay Rate of a classical oscillating dipole

Γ =
2e2ω2

0

3mc3
.

The Steady State Solution can be written as follows

~µ = ~µ0(ω)e−iωt−Γtot ,

where Γtot = Γ′ + ω2

ω2
0
Γ is the total decay rate. Knowing that ~µ = −e~r, we get

~µ0(ω) = −e
2

m

~E0

ω2
0 − ω2 − iωΓtot

.

Defining ∆ = ω − ω0 as the Detuning and considering the situation close to the resonance
condition: ∆ << ω0, we obtain

~µ0(ω) ' − e2

mω0

~E0

2∆− iΓtot
,

thus

αCL = − e2

mω0 [2∆− iΓtot]
,

~µ0(ω) = αCL
~E0.

We now replace e2

mω0
with a term containing Γ, i.e.

e2

mω0
=

3

2
Γ

1

k3
.

The Polarizability of a Classical Dipole can thus be written as

αCL = −3

2

1

k3

Γ

2∆ + iΓtot
.

The complex number represents the presence of damping (radiative and non-radiative).
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3 Polarizability of a Two-Level System

We start from the Hamiltonian of a TLS interacting with an applied electric field ~E through
the dipole operator ~̂d in the semi-classical theory

Ĥ = ĤTLS − [ ~̂d · ~E],

where

ĤTLS =

(
E2 0
0 E1

)
=
h̄ω0

2
σ̂z,

where ω0 = E2−E1
h̄ is the transition frequency and σz =

(
1 0
0 −1

)
is the Pauli matrix. Similarly,

we can sue σx =

(
0 1
1 0

)
to write

d̂ · ~E =

(
0 d12 E0 e

−iωt

d21 E0 e
−iωt 0

)
= h̄V e−iωtσ̂x,

where V is the Rabi Frequency, V = −d12
E0
h̄ .

To solve the problem we can use the Heisenberg Equations of Motion

˙̂
A =

i

h̄
[Ĥ, Â],

which we apply to σz and σx using the Pauli Matrices

σ+ =

(
0 1
0 0

)
,

σ− =

(
0 0
1 0

)
,

σx =

(
0 1
1 0

)
,

σy =

(
0 −i

+i 0

)
.

Also,

σ+ =
σx + iσy

2
,

σ− =
σx − iσy

2
.
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For the oscillating dipole have

d12(t) ' d12(0)eiω0t.

In the coupling term using the Rotating Wave Approximation we can neglect the terms
oscillating with fast frequency components, i.e. ω + ω0. Hence we get

˙̂σ− = (i∆− Γ2)σ̂− +
1

2
iV σ̂z,

˙̂σz = −iΓ1)σ̂z + iV [σ̂− − σ̂+]

and so on....

Here, Γ1 and Γ2 are the Damping Rates: Γ1 is reducing the population and Γ2 is reduc-
ing the dipole moment (coherence). Moreover, the relationship between these two damping
terms is

Γ2 =
Γ1

2
+ Γ∗2,

where Γ∗2 is an additional Dephasing Rate for the coherence. Neglecting non-radiative damp-
ing, Γ1 is given by the Spontaneous Decay, i.e.,

Γ1 =
d2

12ω
3
0

3πε0h̄c3
,

where d12 is the amplitude of the dipole moment.
We can write the Steady State Solution of the expectation values <> of the operators as

< σ− >
ss =

V (∆− iΓ2)

2
[
∆2 + Γ2

2 + V 2 Γ2
Γ1

] ,

< ρ22 >
ss =

1

2

[
1+ < σz >

ss
]

=
V 2 Γ2

2 Γ1

[
∆2 + Γ2

2 + V 2 Γ2
Γ1

] .
Because d12 < σ− >ss represents the expectation value of the dipole moment, the polariz-

ability of a TLS can be written as

αTLS = − d12 < σ− >
ss

1
2 ε0 E0

,

where the 1/2 terms comes from the fact that

E0 cosωt =
1

2

[
eiωt + e−iωt

]
.

Hence

αTLS = − d2
12

ε0h̄

∆− iΓ2

∆2 + Γ2
2 + V 2 Γ2

Γ1

.
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By replacing d2
12 with Γ1 we obtain

αTLS = − 3π

k3

Γ1[∆− iΓ2]

∆2 + Γ2
2 + V 2 Γ2

Γ1

,

while for a classical dipole we have

αCL = − 6π

k3

Γ

2 ∆ + iΓtot
.

The polarizability of the TLS exhibits parametric coupling with the applied electric field, be-
cause of the term V 2 in the denominator. For V 2 → +∞ =⇒ αTLS = 0, i.e. under
saturation the emission for a TLS is not related to the coherent oscillation of an
induced dipole, but to the excited-state population (incoherent emission).

4 Coherent/Incoherent Emission of a Two Level System

The Total Emitted Power can be written (see lecture notes) as:

Ptot = h̄ ω ρss22 Γ1 = R∞

I
IS

1 + I
IS

,

where R∞ represents the emission rate at saturation and IS is the saturation intensity, which
can be related to V 2 (see previous question). The Coherent Emission can be related to the
field created by the coherence, i.e.

E = αTLS E0
k2

4π

eikr

r
(n̂× x̂)× n̂

where n̂ represents the observation direction and x̂ is the direction of the oscillating dipole.
Therefore, the power related to the coherent part can be written as

Pcoh =
σ0

4

Γ2
1(∆2 + Γ2

2)[
∆2 + Γ2

2 + V 2 Γ2
Γ1

]2 I,

where I is the Intensity, I = 1
2
E2

0
Z , and σ0 is the Scattering Cross-Section, σ0 = 3λ2

2π , which
is related to the polarizability (for ∆ = 0 and V = 0) through the expression σ0 = k4|αTLS|2/6π.
By introducing the Saturation parameter

S =
V 2 Γ2

(∆2 + Γ2
2)1
' I

IS
,

we obtain,

Ptot =
h̄Γ1

2

S

1 + S
,

Pcoh =
h̄Γ1

2

Γ1

2Γ2

S

(1 + S)2
.

The incoherent power is simply the difference between the total and the coherent power,

Pincoh = Ptot − Pcoh =
h̄Γ1

2

S

(1 + S)2

[
S + 1− Γ1

2Γ2

]
.

For low excitation, the scattered power is like that of a classical dipole, i.e. Ptot = Pcoh,
whereas above saturation the power is incoherent, i.e. Ptot = Pincoh.
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Figure 1: Power emitted by a TLS as a function of the saturation parameter S.
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