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1 Radiation Reaction

The field acting back on the dipole due to radiation is called Ese]f and it can be seen as a
friction.
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The Abraham Lorentz back action can be written as
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where i = g7’ is the electric dipole moment,
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Thus we can write Eg.p as follows
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The dipole moment is induced by the polarizability times the applied electric field. The latter
is the sum of the external electric field Ey and of the back action due to radiation Eggy, i.e.

fi=a {Eo + Esclf} .

Using the expression for gy we can write
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which leads to an expression for the effective polarizability with radiative corrections
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2 Polarizability of a Classical Point Like Radiator

Consider a dipole of charge q and dipole moment . The equation of motion under an applied
electric field E = Epe ™! reads
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where I represents non-radiative damping, wy is the resonance frequency and I' = ng is the
radiation damping. By comparing this expression with the Abraham Lorentz back action (see
Eq. (2)), we get the expression for the Radiative Decay Rate of a classical oscillating dipole
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The Steady State Solution can be written as follows

[Ij — [ZO (w)e—iwt—f‘tot’

where T'yoy = IV + :j—zI‘ is the total decay rate. Knowing that i = —er’, we get
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Defining A = w — wy as the Detuning and considering the situation close to the resonance
condition: A << wp, we obtain

€2 Ey
mwo 2A — iFtot’

fio(w) =~

thus
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fio(w) = acy,Ey.
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We now replace with a term containing I, i.e.
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The Polarizability of a Classical Dipole can thus be written as
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The complex number represents the presence of damping (radiative and non-radiative).
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3 Polarizability of a Two-Level System

We start from the Hamiltonian of a TLS interacting with an applied electric field E through

the dipole operator d in the semi-classical theory

~
=

H = Hyps — [d- E],

where
S . E2 0 o th “
where wg = =23~ is the transition frequency and o, = 0 1) the Pauli matrix. Similarly,
we can sue = 1 to write
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where V is the Rabi Frequency, V = —dlg%.
To solve the problem we can use the Heisenberg Equations of Motion
A=1a A
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which we apply to o, and o, using the Pauli Matrices
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Also,
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For the oscillating dipole have
dlg(t) >~ dlg(O)eiwot.

In the coupling term using the Rotating Wave Approximation we can neglect the terms
oscillating with fast frequency components, i.e. w + wg. Hence we get
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and so on....

Here, I'1 and I's are the Damping Rates: I'; is reducing the population and I's is reduc-
ing the dipole moment (coherence). Moreover, the relationship between these two damping
terms is
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where I'; is an additional Dephasing Rate for the coherence. Neglecting non-radiative damp-
ing, I'1 is given by the Spontaneous Decay, i.e.,
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where dyo is the amplitude of the dipole moment.
We can write the Steady State Solution of the expectation values <> of the operators as
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Because dija < o_ >%° represents the expectation value of the dipole moment, the polariz-
ability of a TLS can be written as
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where the 1/2 terms comes from the fact that
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By replacing d2, with I'; we obtain
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while for a classical dipole we have
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The polarizability of the TLS exhibits parametric coupling with the applied electric field, be-
cause of the term V2 in the denominator. For V2 — 400 = arrg = 0, i.e. under
saturation the emission for a TLS is not related to the coherent oscillation of an
induced dipole, but to the excited-state population (incoherent emission).
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4 Coherent/Incoherent Emission of a Two Level System

The Total Emitted Power can be written (see lecture notes) as:
e
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where R, represents the emission rate at saturation and Ig is the saturation intensity, which
can be related to V2 (see previous question). The Coherent Emission can be related to the
field created by the coherence, i.e.
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where 7 represents the observation direction and & is the direction of the oscillating dipole.
Therefore, the power related to the coherent part can be written as
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where [ is the Intensity, [ = %E?g , and og is the Scattering Cross-Section, og = %, which
is related to the polarizability (for A = 0 and V' = 0) through the expression o = k*|arps|?/67.
By introducing the Saturation parameter
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we obtain,
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The incoherent power is simply the difference between the total and the coherent power,
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For low excitation, the scattered power is like that of a classical dipole, i.e. Pt = Peon,
whereas above saturation the power is incoherent, i.e. Piot = Pincon-
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Figure 1: Power emitted by a TLS as a function of the saturation parameter S.
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