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1 A Dipole on an Air/Dielectric Interface

• For a dipole sitting on an air/dielectric interface (n1 = 1, n2 = 1.5) calculate the ratio
between the energy radiated into the upper half-space and the energy radiated into the
lower half-space.

• Perform the calculations separately for a horizontal and a vertical dipole.

• Additionally, please calculate the apparent quantum yield, which is defined as the ratio
between the power radiated in the lower half space and the total dissipated power.

We consider a dipole on a surface of transparent material (e.g. glass) and calculate the detected
light on top and under the surface.

E(r) = ω2µ0µ1

↔
G(r0, r)µ

where µ is the electric dipole. This equation indicates that we only need to find the dyadic
Green function in the problem situation. In general this Green function is

↔
G =

i

8π2

∞̈

−∞

↔
Mei[kx(x−x0)+ky(y−y0)+kz1 |z−z0|]dkx dky

For upper part the detector can collect the emitted and reflected light. In order to calculate
the reflected and emitted light we have to find the Green function in each case. We already
calculated emitted light from a dipole for free space. In Free space

↔
M is:

↔
M =

1

k2
1kz1

k2
1 − k2

x −kxky ±kxkz1
−kxky k2

1 − k2
y ±kykz1

±kxkz1 ±kykz1 k2
1 − k2

z1
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The value r0(x0, y0, z0) = 0 is the position of the dipole. If z = 0 is the position of interface
then the negative sign is for z > z0 and the positive sign is for z < z0. Here, the value:

kz1 =
√
k2

1 − (k2
x + k2

y)

k1 =
ω

c

√
ε1µ1√

k2
x + k2

y = k1 sin θ

In order to use Fresnel reflection equation we should split
↔
G to s and p polarization and as a

result decompose
↔
M .

↔
M(kx, ky) =

↔
M s(kx, ky) +

↔
Mp(kx, ky)

↔
Mp =

1

k1(k2
x + k2

y)

 k2
xkz1 kxkykz−1 ±kx(k2

x + k2
y)

kxkykz1 k2
ykz1 ±ky(k2

x + k2
y)

±kx(k2
x + k2

y) ±ky(k2
x + k2

y) (k2
x + k2

y)
2/kz1


↔
M s =

1

kz1(k2
x + k2

y)

 k2
y −kxky 0

−kxky k2
x 0

0 0 0



To calculate the dipole reflected field we simply multiply the individual plane waves in
↔
G with

the corresponding Fresnel reflection coefficient rs and rp.

rp(kx, ky) =
ε2kz1 − ε1kz2
ε2kz1 + ε1kz2

rs(kx, ky) =
µ2kz1 − µ1kz2
µ2kz1 + µ1kz2

↔
M s

ref = rs(kx, ky) ·
↔
M s

↔
Mp

ref = rp(kx, ky) ·
↔
Mp

↔
Gref (r, r0) =

i

8π2

∞̈

−∞

[
↔
M s

ref +
↔
Mp

ref ]ei[kx(x−x0)+ky(y−y0)+kz1 (z+z0)]dkx dky

The electric field of upper half-space is

E(r) = ω2µ0µ1[
↔
G0 +

↔
Gref ]µ

For transmitted part we have the same scenario

ts(kx, ky) =
2µ2kz1

µ2kz1 + µ1kz2

tp(kx, ky) =
2ε2kz1

ε2kz1 + ε1kz2

√
µ2ε1
µ1ε2
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↔
M s

tr = ts(kx, ky) ·
↔
M s

↔
Mp

tr = tp(kx, ky) ·
↔
Mp

↔
Gtr(r, r0) =

i

8π2

∞̈

−∞

[
↔
M s

tr +
↔
Mp

tr]e
i[kx(x−x0)+ky(y−y0)+kz2z+kz1z0]dkx dky.

The electric field of lower half-space is

E(r) = ω2µ0µ1

↔
Gtrµ

We should put each Green function in magnetic field equation.

H(r) = −iω[∇×
↔
G(r0, r)]µ

and then using the Poynting vector to find power density.

〈S〉 =
1

2
Re{E×H∗}

For the calculatiion of P↑ and P↓, we mucst calculate the far-field pattern.

The radiation pattern can be written as:

Pi(Ω)dΩ = r2 < ~Sj > ·n̂Ω

So, for P↑:

P↑(Ω)

P0
=

3

8π

1

P 2

[
P 2
z sin2 θ|φ1|2 + cos2 θ |φ1|2[Px cosφ+ Py sinφ]2 + [Px sinφ− Py cosφ]2 |φ(3)

1 |
2+

Pz

[
[Px cosφ+ Py sinφ] cos θ sin θ [φ

(1)
1 + φ∗1(2) + ...c.c.

]]

Similarly for P↓

P↑(Ω)

P0
=

3

8π

1

P 2

[
P 2
z sin2 θ|φ1|2 + cos2 θ |φ1|2[Px cosφ+ Py sinφ]2 + [Px sinφ− Py cosφ]2 |φ(3)

2 |
2+

Pz

[
[Px cosφ+ Py sinφ] cos θ sin θ [φ

(1)
2 + φ∗2(2) + ...c.c.

]]

3



Nano-Optics,
WS 2020 Solution VII Ausgabe: 05.01.21

Abgabe: 12.01.21

Considering z0 = 0 and ρ = 0 we can write:

φ
(1)
1 = 1 + rp(θ)

φ
(2)
1 = 1− rp(θ)

φ
(3)
1 = 1 + rs(θ)

φ
(1)
3 =

n2

n1

tp cos θ√
n2
1

n2
2
− sin2 θ

φ
(2)
3 = −n2

n1
× tp

φ
(3)
3 =

cos θ√
n2
1

n2
2
− sin2 θ

× ts

S̃ =

√
n2

1

n2
2

− sin2 θ

Power in the upper space:

P↑ =

ˆ 2π

0
dφ

ˆ π/2

0
sin θdθ × P↑(Ω)

ˆ 2π

0
cos2 φdφ =

ˆ 2π

0
sin2 φdφ = π

P↑ =
3π

8π

P0

P 2

ˆ π/2

0

[
2 P 2

z sin2 θ |1 + rp(θ)|2 +

cos2 θ [P 2
x + P 2

y ] |1− rp(θ)|2 + [P 2
x + P 2

y ] |1 + rs(θ)|2
]

sin θ dθ

P↓ =
3π

8π

ˆ π

π/2

P0

P 2

[
2 P 2

z sin2 θ [
n1

n2
]2 +

|tp|2 cos2 θ
n2
1

n2
2
− sin2 θ

+

[P 2
x + P 2

y ] cos2 θ [
n1

n2
]2 |tp|2 + [P 2

x + P 2
y ]
|ts|2 cos2 θ
n2
1

n2
2
− sin2 θ

]
sin θ dθ
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Consider z0 = 0, we can write P ‖↑ as follows:

P
‖
↑ = P0

[
1

2
+

3

8

ˆ 1

0

[
sSz |rp|2 +

s

Sz
|rs|2

]
ds− 3

4

ˆ 1

0
Re
{
sSz r

p − s

Sz
rs
}

ds

]
we can write P⊥↑ as follows:

P⊥↑ = P0

[
1

2
+

3

4

ˆ 1

0

[ s3

Sz
|rp|2

]
ds+

3

2

ˆ 1

0
Re
{ s3

Sz
rp
}

ds

]
For P↓:

P↓ = P↓(allowed) + P↓(forbidden)

2 Outcoupling Efficiency of a Dipole out of a Diamond Matrix

• Consider a dipole (SiV color center, λ = 738 nm) located 10 nm inside a semi-infinte
diamond medium (n = 2.4). Calculate the apparent quantum yield of the dipole for
vertical and horizontal orientation with respect to the interface with air using geometrical-
optics arguments. Consider light collection in the air medium (n = 1).

To do this correctly, take zo = 10 nm and the previous expressions for P↑ and P↓.
We know the expression for the critical angle:

θc = arcsin

(
n1

n2

)
' arcsin

(
1

2.4

)

arcsin

(
1

2.4

)
' arcsin(0.24)

θc ' 24.6◦

Thus, we have to consider the emission of the dipole only up to 24.6◦.
Since we are in the ray optics picture, we can write:

R =

∣∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣∣
2
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T = 1−R = 1−

[
1− 2.4

1 + 2.4

]2

' 83%

η = 83%
Ω(θc)

4π
= 83%

1

2
(1− cos θc)

Ω(θc) =

ˆ 2π

0
dφ

ˆ θc

0
sin θ dθ = 2π(1− cos θc)

η = 83%
1

2
(1− cos θc)

η = 83%
1

2
(1− 0.09) ' 0.83× 0.045 ' 3.7%

• Would the apparent quantum yield change in the wave-optics picture?

For a vertical dipole,

P (θ, φ) = P0
3

8π
sin2 θ

here we assumed that the radiation is in free space.

ηv =
3

8π

ˆ 2π

0
dφ

ˆ θc

0
|tp|2 sin θ dθ

ηv =
3

4

ˆ θc

0
|tp|2 sin3 θ dθ

ηv ' 83%
3

4

ˆ θc

0
(1− cos2 θ) sin θ dθ

ηv ' 83%
3

4

[
x− x3

3

]1

cos θc

Thus for th vertical dipole we get:

ηv ' 83%
3

4

[
(1− cos θc) +

1

3
(cos3 θc − 1)

]

For a horizontal dipole,

ηh =
3

4

ˆ π/2+θc

π/2

∣∣∣tp(θ − π

2

)∣∣∣2 sin2 θ sin
(
θ − π

2

)
dθ
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ηh = 83%
3

4

ˆ π/2+θc

π/2
(1− cos2 θ)(− cos θ) dθ

we can solve:
ˆ π/2+θc

π/2
(cos θ) dθ ' (cos θc − 1)

ˆ π/2+θc

π/2
(cos3 θ) dθ =

ˆ π/2+θc

π/2
(1− sin2 θ) d sin θ

=

[
x− x3

3

]sinπ/2+θc

sinπ/2

' (cos θc − 1)− 1

3
(cos3θc − 1)

Thus for the horizontal dipole we get:

ηh = 83%
3

4

[
2 (1− cos θc) +

1

3
(1− cos3 θc)

]
• Comment on how the fluorescence collection efficiency varies as a function of the numer-

ical aperture of the collection lens for a defect center surrounded by air and surrounded
by diamond.

The collection efficiency is the fraction of photons emitted into a solid angle Ω given by
Ω
4π . The maximum angle at which the emitted photons to be collected is known as θ. The
fraction F which is collected in this case will be :

F =
1

2
(1− cos θ) (1)
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If the photons are collected using a collection optics, lets consider a lens with a numerical
aperture NA, the collection angle modified as follows:

sin θ =
NA

n

where n is the refractive index of the medium surrounding the emitter. The fraction
which is collected within the presence of a collection optics will be :

F =
1

2

[
1− cos

(
sin−1 NA

n

)]
(2)

The figure above shows the fluorescence collection efficiency as a function of numerical aperture
of the collection lens for a defect surrounded by air n = 1 (solid line) and surrounded by
diamond, n = 2.4 (dashed line). The curves are plots of Eq. 2 with n = 1 and n = 2.4,
respectively.
From the graph, it is clear that a high- NA objective lens is desirable, for maximising the
optical signal. In the case of observing colour centres in bulk diamond it is cruicial, where the
refraction at the diamond surface substantially reduces the solid angle over which fuorescence
photons can be emitted if they are to couple into the objective lens. Hence, in this case having
higher numerical apertures probably greater than 1 is desirable (eg: use of an oil immersion or
solid immersion lens).
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