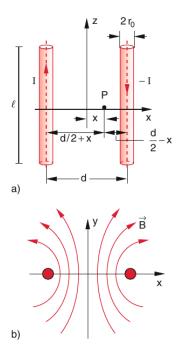
Übungen zur Physik für Chemiker II SoSe 21

Prof. Dr. M. Agio, L. Strauch

Übungsblatt 10


Ausgabe: Di, 15.06.2021

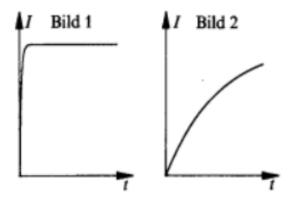
Aufgabe 1.

Zwei lange, parallele Drähte mit Radius r_0 und Abstand d, durch welche der Strom I in entgegengesetzter Richtung fließt, bilden eine elektrische Doppelleitung (siehe Abbildung). Sie stellt ein sehr wichtiges Element für die Übertragung elektrischer Leistung dar. Berechnen Sie:

- (a) Das B-Feld außerhalb der Drähte.
- (b) Das B-Feld innerhalb beider Drähte einzeln.
- (c) Den magnetischen Fluss $\varPhi_{\mathbf{m}}$ durch ein Stück der Doppelleitung der Länge l der durch die Fläche $A=d\cdot l$ fließt.

Bestimmen Sie zum Schluss den Selbstinduktionskoeffizienten L.

Aufgabe 2.


Ein paramagnetisches Gas bei Zimmertemperatur ($T=300\,\mathrm{K}$) wird in ein externes homogenes Magnetfeld der Feldstärke $B=1,5\,\mathrm{T}$ gebracht. Die Atome des Gases besitzen ein magnetisches Dipolmoment $\mu=1\mu_B$. Wie groß sind die mittlere Translationsenergie eines Atoms des Gases und die Energiedifferenz ΔU_B zwischen der parallelen und der antiparallelen Ausrichtung des atomaren magnetischen Dipolmoments mit dem äußeren Feld ?

Aufgabe 3.

- (a) Wenn ein Stoff keine ungepaarten Elektronen hat, ist er dann paramagnetisch oder diamagnetisch?
- (b) Erklären Sie kurz, warum Eisen bei $T_C=1041\,\mathrm{K}$ (Curie-Temperatur) paramagnetisch wird und alle seine ferromagnetischen Eigenschaften verliert.

Aufgabe 4.

Die beiden nebenstehenden Bilder zeigen den Stromanstieg für eine Spule beim Anlegen der gleichen äußeren Spannung U_B . In einem Fall enthält die Spule einen Eisenkern, im anderen Fall nicht. Ordnen Sie die Bilder diesen beiden Fällen zu und begründen Sie ihre Auswahl.

