Übungen zur Physik für Chemiker II SoSe 21

Prof. Dr. M. Agio, L. Strauch

Übungsblatt 4

Ausgabe: Di, 04.05.2021

Aufgabe 1.

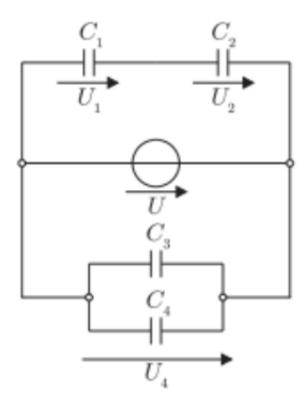
Betrachten Sie eine homogen geladene Hohlkugel mit Innenradius R_1 und Außenradius $R_2 > R_1$.

Drücken Sie die Ladungsdichte durch die Gesamtladung ${\cal Q}$ der Hohlkugel aus.

- (a) Berechnen Sie das elektrische Feld E und das elektrische Potential Φ der Hohlkugel (für alle Raumgebiete) mit Hilfe des Gaußschen Satzes.
- (b) Skizzieren Sie den Verlauf von ρ , \vec{E} und Φ als Funktion des Abstandes r vom Mittelpunkt.

Aufgabe 2.

An der skizzierten Schaltung aus ungeladenen Kondensatoren wird die Gleichspannung $U=100\,\mathrm{V}$ angelegt.


Es gilt:

$$C_1 = 4 \,\mathrm{nF}$$

$$C_2 = 2 \, \mathrm{nF}$$

$$C_3 = 5 \,\mathrm{nF}$$

$$C_4 = 1 \,\mathrm{nF}$$

- (a) Ermitteln Sie die Ladung ${\cal Q}_1$ bis ${\cal Q}_4$ der vier Kondensatoren.
- (b) Welche Spannungen ${\cal U}_1, {\cal U}_2$ und ${\cal U}_4$ stellen sich ein ?

Aufgabe 3.

An einen Plattenkondensator mit der Plattenfläche $A=500\,\mathrm{cm^2}$ und dem Plattenabstand $d=4\,\mathrm{mm}$ im Vakuum wird die Spannung $U=400\,\mathrm{V}$ angelegt.

- (a) Welche Ladung nimmt der Kondensator auf?
- (b) Welche Feldstärke hat das elektrische Feld im Kondensator?
- (c) Wie ändert sich die Ladung und die Feldstärke, wenn der Plattenabstand bei Beibehaltung der Verbindung zur Stromquelle auf 6 mm vergrößert wird?
- (d) Wie ändert sich die Ladung, die Feldstärke und die Spannung, wenn die Vergrößerung des Plattenabstandes nach Abklemmen der Spannungsquelle erfolgt?