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Courtesy of Patrini, M., Università degli Studi di Pavia, Italy, and Bettotti,
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ABSTRACT

This work is a theoretical investigation on the physical properties of semiconductor-based two-

dimensional photonic crystals, in particular for what concerns systems embedded in planar dielec-

tric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or

based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-

crystal slabs is numerically computed and the associated light-line problem is discussed, which

points to the issue of intrinsic out-of-plane diffraction losses for the photonic bands lying above

the light line. The photonic states are then classified by the group theory formalism: each mode

is related to an irreducible representation of the corresponding small point group. The optical

properties are investigated by means of the scattering matrix method, which numerically imple-

ments a variable-angle-reflectance experiment; comparison with experiments is also provided. The

analysis of surface reflectance proves the existence of selection rules for coupling an external wave

to a certain photonic mode. Such rules can be directly derived from symmetry considerations.

Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled

in view of designing building blocks for photonic integrated circuits. The proposed designs are

found to comply with the major requirements of low-loss propagation, high and single-mode trans-

mission. These notions are then collected to model a photonic-crystal combiner for an integrated

multi-wavelength-source laser.
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INTRODUCTION

Since the pioneering works of Yablonovitch, E. (1987) and John, S. (1987) on inhibited

spontaneous emission and on light localization in periodic dielectric structures, respectively, the

term photonic crystal has been the appellation for any system characterized by a dielectric function

ε that is periodic in one or more dimensions, as shown in Fig. 1. Accordingly, the classification

into one-, two-, or three-dimensional photonic crystals depends on whether ε is periodic in one,

two, or three dimensions. A typical example of one-dimensional photonic crystal is the so-called

Bragg mirror, which has been studied since a long time before the proposal of Yablonovitch, E. and

John, S. [Yariv, A., et al. (1984)] and, nowadays, is employed in several optical and optoelectronic

devices. Except this case, poor research was done on the physics of periodic dielectric structures, if

compared to the intense research activity that started after 1987 and still grows every year. Indeed,

since the very beginning, photonic crystals appeared as promising candidates for applications in

various areas of optics and optoelectronics. Just for the sake of curiosity, mother nature, as often

does, already knows how to exploit photonic crystals, for instance to make beautiful wings for

butterflies or beautiful opals for ladies. However, apart a few other examples, photonic crystals are

not so common in nature and they can be thus considered as artificial materials. For example, as

shown in Fig. 1, a photonic crystal can be simply fabricated by arranging two different dielectric

media according to a desired pattern.

The idea that leads to the concept of photonic crystal can be easily understood by following the

analogy between photons in a periodic dielectric potential and electrons in a crystal. It is well

known [Bassani, F., et al. (1975); Cardona, M., et al. (1996)] that the periodicity of the electronic

potential is the reason for the existence of the electronic band structure. Therefore, like a periodic

potential leads to allowed bands and band gaps for electrons, for photons, a periodic dielectric

function leads to the so-called photonic bands and photonic band gap. A photonic band refers to
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Figure 1 An example of one-dimensional (1D) (left), two-dimensional (2D)
(center) and three-dimensional (3D) (right) photonic crystal. Im-
ages taken from the book Photonic crystals – molding the flow of
light, by Joannopoulos, J. D., et al. (1995).

modes that can propagate inside the photonic crystal, while the photonic band gap represents a

frequency domain, where photons cannot exist. Indeed, one of the most attracting features of

photonic crystals is the existence of a photonic band gap, because of the possibility to control

the electromagnetic radiation. For example, the spontaneous emission of atoms embedded in a

photonic crystal can be inhibited, if the emission frequency lies within the photonic band gap

[Yablonovitch, E. (1987); Koenderink, A. F., et al. (2002)]. On the contrary, the emission pattern

can be enhanced or reshaped by photonic-band-structure effect [Fan, S., et al. (1998); Busch, K.,

et al. (2000); Erchak, A. A., et al. (2001)]. Also, the band gap can be exploited to fabricate high

reflective mirrors, which is in fact the principle of operation of a Bragg mirror.

Ideally, the photonic band gap is in one, two, or three dimensions depending on the periodicity of

the dielectric function, though the rule is not valid for any structure. Now, the fact that photonic

crystals are artificial materials opens infinite possibilities on the choice of the dielectric pattern.

Furthermore, by designing defects in the otherwise periodic structure, one wishes to create defect

states within the photonic band gap. Roughly speaking, according to the dimensionality of the

defect itself and to the dimensionality of the photonic band gap, various degrees of light localization

can be obtained [Joannopoulos, J. D., et al. (1995, 1997)]: for three-dimensional photonic crystals,

a point defect represents a three-dimensional cavity, a linear defect acts like a waveguide, while a

planar defect is, accordingly, a planar waveguide; similarly, for a two-dimensional photonic crystal,

a point defect (in the plane of periodicity) makes a two-dimensional cavity, and a linear defect
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forms a planar waveguide. Finally, for a one-dimensional photonic crystal, a point defect (along the

direction of periodicity) is in practice a Fabry-Pérot resonator between two Bragg mirrors. Thus, all

the above functionalities are implemented by appropriate tailoring of a photonic band gap material.

This concept envisages that several optical components (resonators, waveguides, add/drop filters,

splitters, combiners, lasers, etc.) could be designed on a single photonic-crystal chip to process

optical signals just like “conventional” chips do for electrical pulses. Such a powerful expression

of the potentiality of photonic crystals is one of the motivations that make them so attracting to

physicists, engineers. . . and to managers. Following a roadmap towards the fabrication of photonic

integrated circuits, the recently past years have provided important results as regards theory and

experiment of passive and active photonic-crystal building blocks: micro-cavities [Villeneuve, P. R.,

et al. (1996); Foresi, J. S., et al. (1997); Painter, O., et al. A (1999); Pottier, P., et al. (1999);

Benisty, H., et al. (1999); Kramper, P., et al. (2001)], straight waveguides [Baba, T., et al. (1999,

2001); Lončar, M., et al. B (2000); Johnson, S. G., et al. (2000); Leonard, S. W., et al. (2000);

Olivier, S., et al. A (2001); Talneau, A., et al. (2001)], bent waveguides [Mekis, A., et al. (1996);

Lin, S.-Y., et al. B (1998); Tokushima, M., et al. (2000); Lončar, M., et al. A (2000); Chutinan,

A., et al. (2000, 2002); Chow, E., et al. (2001); Moosburger, J., et al. (2001); Talneau, A., et

al. B (2002)], add/drop filters [Fan, S., et al. (1998, 1999); Boscolo, S., et al. (2002)], and lasers

[Ryu, H.-Y., et al. (2002); Shkunov, M. N., et al. (2002); Cao, J. R., et al. (2002); Imada, M., et

al. (2002)].

Besides the objective of making integrated optical circuits, photonic crystals are interesting for

other reasons too. For instance, there are efforts to exploit the band gap properties for fabricating

low-loss photonic-crystal fibers. By leaving for a moment the physics related to the existence of a

photonic band gap, one realizes that also photonic bands exhibit important features. Indeed, the

photonic band structure is characterized by a variety of dispersion curves that makes the electro-

magnetic properties of photonic crystals quite unique. The possibility of tailoring the dispersion of

light, by working on the structure design, leads to the availability of artificial media, with peculiar

features. In this sense, photonic crystals may enhance the separating power of a prism, making

a super-prism [Kosaka, H., et al. (1998)], or exhibit an anomalous refraction behavior [Notomi,

M, et al. (2000); Luo, C., et al. (2002); Pertsch, T., et al. (2002)]. In a similar manner, the



INTRODUCTION 4

band dispersion can be designed to provide a dielectric lens able to focus light down to micron-size

spots [Kosaka, H., et al. (2000)]. The dispersion properties of photonic crystals are also interesting

in non-linear optics for obtaining phase-matching and enhancement of second- or third-harmonic

generation [Martorell, J., et al. (1997); Cowan, A. R., et al. (2002); Dumeige, Y., et al. (2002)]. In

this case, the photonic crystal has to be made of a periodic arrangement of at least one non-linear

medium [Berger, V. (1998)].

The implementation of such beautiful ideas relies on a deep knowledge of the physical properties

of photonic crystals. Many efforts have been devoted to theory, experiment and fabrication of these

artificial materials [see the feature issues J. Opt. Soc. Am. B, 10 (2); J. Opt. Soc. Am. B, 19

(9); J. Lightwave Technol., 17 (11); IEEE J. Quantum Electronics, 38 (7) and the NATO - ASI

conference proceedings edited by Weisbuch, C., and Rarity, J. (1996); Soukoulis, C. M. (1996,

2001) for a collection of papers]. While theorists have to face the fundamental problem of solving

Maxwell’s equation [Jackson, J. D. (1975)] for a variety of photonic crystals, with or without defect

states, experimentalists are committed with the not easy task of characterizing the samples and

discovering new effects not accounted by theory. Last but not least, fabricators have to methods

for obtaining regular dielectric patterns with the desired shape. These objectives are particularly

challenging, specially for what concerns experiment and fabrication, if one wants photonic crystals

to operate at the telecommunication wavelength of 1.55µm or, in general, in the frequency domain

of optical and optoelectronic devices. Indeed, this implies that the lattice constant of the dielectric

mesh shrinks down to a few microns up to a few hundreds of nanometers, since the band-gap effects

are effective for wavelengths comparable or smaller than the periodicity of the dielectric constant.

To this purpose, even if much attention has been devoted to the problem of finding three-dimensional

structures that forbid light propagation in all directions [Leung, K. M., et al. B (1990); Ho, K. M.,

et al. (1990, 1994); Yablonovitch, E., et al. (1991); Busch, K., et al. (1998)], in particular,

with noticeable achievements for artificial opals [Thijssen, M. S., et al. (1999); Blanco, A., et

al. (2000); Vlasov, Y. A., et al. (2001)], two-dimensional photonic crystals have attracted more

interest [Meade, R. D., et al. (1992); Villeneuve, P. R., et al. (1992); Padjen, R., et al. (1994);

Cassagne, D., et al. (1996); Anderson, C. M., et al. (1997); Li, Z.-Y., et al. (1998); Wang, X.-H.,

et al. (1999); Agio, M. (1999); Agio, M., et al. A (2000)], though they allow to control light only
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in two dimensions, because they are much easier to fabricate in the optical region. Nevertheless,

by embedding a two-dimensional photonic crystal in a waveguide configuration [Meade, R. D., et

al. (1994)], one attains both in-plane control of light propagation, by means of the two-dimensional

band gap, and vertical control, by conventional dielectric confinement [Saleh, B. E. A., et al. (1991)].

The above concept is particularly suitable for being implemented in semiconductor heterostructures,

where the desired two-dimensional pattern is transferred to the planar waveguide by lithographic

etching [Gourley, P. L., et al. (1994); Krauss T. F., et al. (1996); Chow, E., et al. (2000);

Sondergaard, T., et al. (2000); Silvestre, E., et al. (2000); Kawai, N., et al. (2001); Romanato,

F., et al. (2002); Peyrade, D., et al. (2002)]. As displayed in Fig. 2, a typical waveguide-based

two-dimensional photonic crystal is composed by a guiding layer (black), sandwiched between two

low-index materials, in this case air (light-gray) and the substrate (gray-green). Whereas the

pattern controls the flow of light in two dimensions, the presence of a core layer provides vertical

confinement. Such feature places photonic crystal slabs in between three- and two-dimensional

photonic crystals.

Figure 2 Side view of a photonic-crystal slab. The light gray region is air,
the black region is the core layer, and the gray-green region is the
substrate. Air holes have been etched down to the substrate.

The fabrication of micron-size two-dimensional photonic-crystal waveguides based on Si/SiO2,

GaAs/AlGaAs, GaInAsP/InP and other common semiconductor heterostructures, has made pos-

sible the measurement of photonic bands in the near-infrared frequency domain [Labilloy, D., et

al. A (1997); Astratov, V. N., et al. A (1999); Astratov, V. N., et al. (2000); Pacradouni,

V., et al. (2000); Coquillat, D., et al. (2001); Galli, M., et al. B (2002); Patrini, M., et al.

A (2002); Ferrini, R., et al. (2002)]. Likewise, the characterization of photonic-crystal channel
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waveguides in the near-infrared regime, see the SEM micrograph of Fig. 3, including sharp bends

or resonant cavities, has been attained thanks to the availability of the appropriate samples and

refined experimental techniques [Foresi, J. S., et al. (1997); Lin, S.-Y., et al. B (1998); Pottier, P.,

et al. (1999); Baba, T., et al. (1999, 2001); Benisty, H., et al. (1999); Benisty, H., et al. B (2002);

Tokushima, M., et al. (2000); Lončar, M., et al. B (2000); Smith, C. J. M., et al. (2000); Chow,

E., et al. (2001); Moosburger, J., et al. (2001); Talneau, A., et al. A (2002)].

Figure 3 SEM micrograph of a dielectric photonic crystal waveguide; cour-
tesy of Talneau, A., Laboratoire de Photonique et Nanostructures
(LPN) - Centre National pour la Recherche Scientifique (CNRS),
France.

However, embedding two-dimensional photonic crystals in a waveguide configuration has raised

serious issues that, in part, have yet to be solved. First of all, the calculation of the photonic band

structure has to account for the vertical profile of the planar waveguide. To this purpose, theorists

have devised numerical techniques [Johnson, S. G., et al. (1999, 2000); Lončar, M., et al. A (2000);

Ochiai, T., et al. A (2001); Andreani, L. C. (2002)], to overcome the impossibility of treating

photonic-crystal slabs with the conventional plane-wave expansion method [John, S., et al. (1988);

Leung, K. M., et al. B (1990); Ho, K. M., et al. (1990)], which represents the standard for comput-

ing the mode dispersion in bulk photonic crystals. Secondly, the photonic-crystal pattern has the

effect of coupling the guided modes of the system to radiation modes, whenever the corresponding

bands lie above the light lines of the cladding media (often air and dielectric substrate); in other

words the spectrum of a photonic-crystal slab is composed by truly guided modes, below the light

line, and resonances, above the light line, which are also called quasi-guided modes. Since quasi-

guided modes are subject to intrinsic propagation losses [D’Urso, B., et al. (1998); Benisty, H., et

al. (1999); Lalanne, Ph., et al. (2001); Bogaerts, W., et al. (2001); Ochiai, T., et al. A (2001)] one
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would rather choose to work with truly guided modes. Unfortunately, truly guided modes are sup-

ported by almost only photonic-crystal slabs with a high-index contrast between core and cladding,

like a suspended dielectric membrane (air bridge) [Kawai, N., et al. (2001)], a silicon-on-insulator

waveguide [Baba, T., et al. (2001)] or a GaAs/Al2O3 waveguide [Chow, E., et al. (2000)]; on the

other hand, photonic crystals based on weak-index-contrast heterostructures, like GaAs/AlGaAs

[Krauss T. F., et al. (1996)] or GaInAsP/InP [Ferrini, R., et al. (2002)] can support only quasi-

guided modes. Since propagation losses represent an unwanted feature, the solution seems to be

simple: fabricate photonic crystals using strong-confinement waveguides. However, the picture is

not as trivial as it appears. Indeed, any time that a guided mode encounters a defect, be a bend,

a resonant cavity or simply roughness, some power is lost because of the defect that couples to

radiation modes. Now, a photonic-crystal integrated circuit is definitely plenty of defects, which

are there to accomplish a precise functionality. In this case, also by employing strong-confinement

waveguides, one expects to have losses. Since it has been argued that losses are proportional to the

square power of the dielectric contrast between core and cladding [Benisty, H., et al. (2000)], the

situation gets blurred: is it better to employ strong-confinement photonic-crystals, which support

guided modes, though lead to higher losses in correspondence of defects, or better to choose for

weak-confinement photonic-crystals, whose quasi-guided modes exhibit reasonable losses with or

without defects? The question is challenging and the photonic-crystal research community has yet

to find which is the correct answer. Indeed, besides the difficulty of calculating the amount of losses,

which became possible only very recently [Lalanne, Ph., et al. (2001); Ochiai, T., et al. A (2001);

Bogaerts, W., et al. (2001)] there are many aspects that one has to consider for designing the

optimal photonic-crystal structure, for example the ease of fabrication. All in all, much depends

on what purpose the sample is made for. However, it is clear that the previously cited results

on waveguides, bends and resonant cavities have to be weighted with the awareness that the way

towards a “killer” application, which will make photonic crystals enter our everyday life, likewise

the transistor did for silicon about fifty years ago, might be still long.

The present work would like to contribute to the frenzied research in this area, by offering some

results on the optical properties and on wave propagation in semiconductor-based two-dimensional
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photonic crystals. The aim is to lead the reader from the basic concepts that are with the photonic

band picture, up to the modelling issues of complex building blocks for photonic-integrated circuits,

with emphasis on the guiding and optical properties of quasi-guided modes. Particular attention

is devoted to highlighting differences or similarities between two-dimensional photonic crystals and

two-dimensional photonic-crystal slabs, in particular, as regards the photonic band structure, the

symmetry properties and the selection rules that concern the coupling to radiative modes. The wish

is to provide strong arguments to convince the reader that quasi-guided modes may be effectively

harnessed in both fundamental research and photonic-crystal applications: their dispersion can be

very efficiently measured by surface reflectance [Astratov, V. N., et al. A (1999)], making the char-

acterization of samples easier than with other methods [Yablonovitch, E., et al. (1989); Robertson,

W. M., et al. A (1993); Labilloy, D., et al. (1999)], specially in the near-infrared/optical regime;

with the same technique, one can have a direct insight on the selection rules and, thus, on the sym-

metry properties of quasi-guided modes [Ochiai, T., et al. A (2001); Andreani, L. .C., et al. (2001);

Galli, M., et al. B (2002)]; finally, the surface reflectance can also provide information of their

guiding properties [Galli, M., et al. B (2002)]. In other words, one could say that quasi-guided

modes are “optically active”, in the sense that they do respond to an optical excitation, while

guided modes are “hidden” below the light cone and are thus more difficult to access. For what

concerns wave propagation, the quasi-guided modes of weak-confinement photonic crystals may be

better than guided modes for the reasons discussed in the previous paragraph. Moreover, since

weak-confinement implies that the mode dispersion be similar to that of an ideal two-dimensional

photonic crystal [Andreani, L. C. (2002); Qiu, M. (2002); Kafesaki, M., et al. (2002)], one could

take advantage of such feature, to model wave propagation in weak-confinement photonic-crystal

slabs within a two-dimensional approximation [Qiu, M. (2002)], with obvious benefits.

The work is organized into three chapters. Each chapter begins with a bibliographic review on

the arguments that will be discussed in there. The intention is to provide the reader with some

background, before tackling the inner sections. The first chapter is dedicated to the study of the

photonic band structure of two-dimensional photonic crystals and photonic-crystal slabs, with em-

phasis on vertical-confinement effects and on the symmetry properties of the energy eigenstates.
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The concept of quasi-guided mode is also introduced. The last section briefly discusses linear defects

in two-dimensional photonic crystals, whose concepts will be recalled and extended while dealing

with wave propagation. The second chapter carries on the comparison between photonic crystals

and photonic-crystal slabs, by dealing with the optical properties and the determination of the

photonic band structure by means of the surface-reflectance method, proposed by Astratov, V. N.,

et al. A (1999). Moreover, the selection rules for coupling to external radiation are discussed.

Finally, surface reflectance is employed for studying the dependence of the propagation losses of

quasi-guided modes on the waveguide geometry. This analysis leads to the third chapter, which

entirely concerns wave propagation of quasi-guided modes in weak-confinement photonic-crystal

slabs, based on GaAs/AlGaAs and GaInAsP/InP heterostructures. Starting from the transmission

properties of straight channel waveguides, like the one of Fig. 3, the study is then extended to

waveguides with sharp bends. The discussion is centered on the issue of attaining single-mode

transmission in multi-mode waveguides, because they exhibit lower propagation losses than single-

mode waveguides. To this purpose, several bend designs are investigated. After that, the attention

is focussed on other building blocks, like splitters and combiners. The final objective is to gather

these results in the design of a photonic-crystal combiner for a multi-wavelength-source laser, which

would aim to demonstrate the feasibility of photonic-crystal devices for integrated optics.

Much of the results of Chapter 2 have been carried out thanks to various collaborations and

projects on the optical properties of one- and two-dimensional photonic crystals. Macro-porous

silicon samples have been grown by the group of Pavesi L. at the Department of Physics, Univer-

sità degli Studi di Trento, Italy, in the framework of a MIUR-Cofin 2000 project involving Trento

and Pavia. GaAs-based photonic-crystal slabs (samples L2 and RUN3) have been fabricated by

the groups of Di Fabrizio E. and De Vittorio M. at National Nanotechnology Laboratory (NNL)

- Istituto Nazionale di Fisica della Materia (INFM), Italy, within an INFM-PAIS 2001 research

project involving Lecce, Trieste and Pavia. The variable-angle-reflectance experiments have been

performed by the groups of Guizzetti G. and Marabelli F. at the Department of Physics “A. Volta”,

Università degli Studi di Pavia, Italy, while the theoretical work is by Andreani L. C. and Agio M.,

always at the Department of Physics “A. Volta”.
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Chapter 3, instead, partially reports on the activity of a European Union Information Societies

Technology (IST) program, whose acronym is Photonic Crystal Integrated Circuits (PCIC), which

involves eight institutions: Ecole Polytechnique de Palaiseau (EPP), France; Ecole Polytechnique

Fédérale de Lausanne (EPFL), Switzerland; Würzburg Universität, Germany; RIEE, Prague; Lab-

oratoire de Photonique et Nanostructures (LPN) - Centre National pour la Recherche Scientifique

(CNRS), France, Opto+ - Alcatel, France; Kungl Tekniska Högskolan (KTH), Sweden; and Insti-

tute of Electronic Structures and Lasers (IESL) - Foundation for Research and Technology Hellas

(FORTH), Crete, Greece. The objective of the research project is to put the bases for making

photonic-integrated circuits employing InP-based photonic crystals. For what concerns the results

discussed in Chapter 3, the InP-samples have been grown by Mulot, M. et al. at KTH, Sweden,

Thomas H. et al. at Würzburg Universität, Germany and people from Opto+ - Alcatel, France.

The experimental data are courtesy of Talneau A., LPN - CNRS, France, Olivier S., EPP, France,

and Moosburger J., Würzburg Universität, Germany. The numerical modelling has been performed

by Agio M. and Kafesaki M. at IESL - FORTH, Crete, Greece.

The part of the work that is more related to fundamental research (Chapters 1 and 2) has been

carried out mainly at the Department of Physics “A. Volta”, Università degli Studi di Pavia, under

the guidance of prof. Lucio C. Andreani. Instead, the part that is more application oriented (Chap-

ter 3) has been accomplished at the Department of Physics, Iowa State University, supervised by

prof. Costas M. Soukoulis, thanks to the “Memorandum of Agreement - International Doctorate”

between the Departments of Physics of Università degli Studi di Pavia and Iowa State University.

Pavia, November 2002
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CHAPTER 1. PHOTONIC BANDS

The concept of photonic band is fundamental for understanding photonic crystals. This will

be more evident in the following chapters, when optical properties and wave propagation will be

analyzed. The aim is to provide the reader with a physical background on the band structure of

two-dimensional photonic crystals and photonic crystal slabs made of air holes in semiconductor

materials.

The chapter is organized as follows. Section 1.1 is an historical overview of photonic crystals,

with emphasis on the calculation of photonic bands and their symmetry properties. A short review

on the dispersion properties of photonic crystal waveguides is also present. Section 1.2 starts

from the problem of solving Maxwell’s equations in a periodic dielectric structure using the plane-

wave expansion method. The photonic band picture and the concept of photonic band gap are

introduced. Section 1.3 is dedicated to two-dimensional photonic crystals, in particular to the case

of a triangular lattice of air holes in a dielectric material. A subsection describes the classification

of bands according to group-theory. Section 1.4 concerns two-dimensional photonic crystal slabs.

A numerical method for computing the bands is given and the light-line problem is discussed.

Examples are considered for both strong and weak vertical confinement structures. The issue of

out-of-plane diffraction losses is postponed to the next chapters. Section 1.5 is about the dispersion

relation of dielectric linear defects in two-dimensional photonic crystals.

1.1 History

Since the very beginning of research in photonic band-gap materials, many efforts have been

devoted to the study of photonic bands [John, S., et al. (1988); Leung, K. M., et al. B (1990);

Ho, K. M., et al. (1990); Yablonovitch, E., et al. (1991)]. The main purpose was to design
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structures exhibiting a complete photonic band gap in three dimensions, to achieve a full control

over spontaneous emission and light localization. Indeed, the papers that first proposed photonic

crystals concerned these subjects [Yablonovitch, E. (1987); John, S. (1987)].

Calculating the band structure of a three-dimensional photonic crystal was not an easy task, also

because of the vector nature of Maxwell’s equations. Strangely enough, the study did not start

from the simplest cases (one- and two-dimensional photonic crystals), but researchers tried hard to

solve the full three-dimensional problem. Yablonovitch, E., et al. (1989) and Leung, K. M., et al.

A (1990) proposed a numerical method, called the plane-wave method, based on the expansion of

the electromagnetic field on plane waves and the diagonalization of the resultant eigenvalue problem.

In these work, using the scalar wave approximation, it was shown that a face-centered-cubic lattice

of dielectric spheres in air has a complete band gap. A couple of years later, Leung, K. M., et al.

B (1990) reported on the full vector calculation within the plane-wave method and showed that no

complete band gap exists for that structure. The discrepancy between the data obtained with and

without the scalar wave approximation demonstrated the necessity of preserving the vector nature

of the electromagnetic field in numerical computations. Just a month after the publication of this

work, Ho, K. M., et al. (1990) found that dielectric spheres arranged in the diamond structure

possess a full photonic band gap. Subsequently, Yablonovitch, E., et al. (1991) designed another

system with complete band gap, with a structure more suitable for micro-fabrication.

Even though three-dimensional photonic crystals were much attracting for their novel properties, in

view also of revolutionary applications in optical communications, their fabrication was too much

demanding yet to reach lattice constants apt for operation at micron and sub-micron wavelengths.

Two-dimensional photonic crystals could be a fair trade-off between a three-dimensional band

gap and a more feasible micro-fabrication. Moreover, reducing the problem to two-dimensions was

certainly helpful in understanding the new concepts brought by photonic crystals. A complete band

gap in two-dimensions was first theoretically predicted and experimentally demonstrated by Meade,

R. D., et al. (1992) for a triangular lattice of air holes in a dielectric background. Subsequently,

many other structures with two-dimensional band gap were theoretically investigated [Villeneuve,

P. R., et al. (1992); Padjen, R., et al. (1994); Cassagne, D., et al. (1996); Anderson, C. M., et

al. (1997); Li, Z.-Y., et al. (1998); Wang, X.-H., et al. (1999); Agio, M. (1999); Agio, M., et al.
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A (2000)]. For example, Cassagne, D., et al. (1996) studied the formation of a photonic band

gap for the graphite and the boron-nitride structures; Anderson, C. M., et al. (1997) thoroughly

analyzed symmetry-reduction effects in square-lattice photonic crystals; Li, Z.-Y., et al. (1998)

exploited anisotropy to increase the size of the band gap. At the same time, other numerical

methods for band structure calculation were proposed: the Korringa-Kohn-Rastoker (kkr) method

by John, S., et al. (1988), the transfer-matrix method by Pendry, J. B., et al. (1992), the tight-

binding parametrization by Lidorikis, E., et al. (1998), the finite-difference time-domain method

by Qiu, M., et al. A (2000) and other methods based on Green’s functions [Martin, O. J. F., et

al. (1999)]. Nevertheless, the plane-wave expansion became the standard numerical method to

compute photonic bands.

In a few years of intense work on band structure calculation, there was quite a number of two-

and three-dimensional photonic crystals available for fabrication and characterization. The first

experiments were performed at the micro-wave frequency regime [Yablonovitch, E., et al. (1989);

Meade, R. D., et al. (1992); Robertson, W. M., et al. A (1993); Thijssen, M. S., et al. (1999)],

but much of the interest in photonic crystals was for the frequency range close to 1.55µm. Exper-

iments on three-dimensional photonic crystals with band gaps at micrometer and sub-micrometer

wavelengths, had to wait the advent of self-assembled structures [Busch, K., et al. (1998); Blanco,

A., et al. (2000); Vlasov, Y. A., et al. (2001)], which provided a more affordable and efficient

fabrication technique, than complicated etching processes. A full photonic band gap near 1.5µm

was measured for inverted opals made of silicon [Blanco, A., et al. (2000)]. Besides that, interest-

ing results have also been obtained for the so-called layer-by-layer structure: a three-dimensional

photonic crystal fabricated by stacking dielectric or metallic rods to form a net with the symmetry

of the diamond lattice [Ho, K. M., et al. (1994); Lin, S. Y., et al. A (1998); Fleming, J. G., et

al. (2002)]. In order to perform measurements of two-dimensional photonic crystals with micron-

size lattice constant, refined etching techniques were necessary as well. Two solutions were found:

one based on electrochemical etching, the other based on lithographic methods already developed

for semiconductor nano-structures used in micro-electronics. Electrochemical etching is exploited

to fabricate macro-porous silicon with a two-dimensional lattice of regular air holes distant from

10µm to 1µm from each other and deep up to 100 µm [Lehmann, V., et al. (1990); Grüning, U.,
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et al. (1996); Birner, A., et al. (1998); Rowson, S., et al. (1999)]. Such an high aspect ratio

makes macro-porous silicon effectively a real two-dimensional photonic crystals. However, being

really two-dimensional carries the flaw of obtaining only a two-dimensional control of light. This

can be interesting for fundamental research, but in most cases it is not useful for applications.

Another issue is that this etching process is restricted to one material, i.e. to silicon. However, it

is worth to mention that there are also attempts to fabricate macro-porous silicon samples yielding

a three-dimensional control of light by vertical pore modulation [Schilling, J., et al. B (2001)].

Lithographic techniques are not restricted to silicon and they can be applied to many semicon-

ductors, offering more freedom in the choice of the material. They are also more accurate than

electrochemical etching, but the etch-depth can be maximum a few microns against 100µm of

macro-porous silicon. Considering that wavelength, lattice constant end etch-depth are of the same

order of magnitude, the concept of two-dimensional crystal starts to be questionable for these sys-

tems. In this sense, the concept of two-dimensional photonic crystal had to be generalized to a

new class of structures: the finite-height two-dimensional photonic crystals, also named photonic

crystal slabs, see Fig. 2. The first fabrication of a two-dimensional photonic crystal slab operating

at near-infrared wavelengths is by Krauss T. F., et al. (1996). They showed that a photonic band

gap in the range of 800-900nm can be obtained embedding a two-dimensional photonic crystal in

a GaAs/AlGaAs waveguide configuration. They also envisaged that the fabrication process should

permit straightforward integration of such structures in other optical and optoelectronic devices.

Photonic crystal slabs, contrary to two- and three-dimensional photonic crystals, were first in-

vestigated by experiments rather than theory, even though their proposal dates back to Meade,

R. D., et al. (1994). Indeed, whereas the manufacture of photonic crystal slabs took advantage of

a ready-to-use expertise on lithography of semiconductor heterostructures, the complication added

by the presence of a finite-size dimension required some time to implement efficient and accurate

numerical methods for band structure calculations.

Thanks to the availability of high-quality GaAs-based samples and to a novel experimental tech-

nique, Labilloy, D., et al. A (1997) were able to perform quantitative measurements of transmission,

reflection and diffraction at near-infrared wavelengths of waveguide-based two-dimensional photonic

crystals. Also, this work demonstrated that scattering losses out of the waveguide plane do not
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disrupt the band gap properties and sharp band edges were found. Besides the GaAs/AlGaAs

system [Labilloy, D., et al. A (1997); Benisty, H., et al. (1999); Astratov, V. N., et al. A (1999);

Galli, M., et al. B (2002)], other types of waveguide are of interest for photonic crystals and are

currently under experimental investigation: Si/SiO2 [Patrini, M., et al. A (2002); giapponesi],

InP/GaInAsP [Ferrini, R., et al. (2002)], self-standing membrane [Pacradouni, V., et al. (2000);

Silvestre, E., et al. (2000); Kawai, N., et al. (2001)], and AlGaAs/Al2O3 [Chow, E., et al. (2000)].

Photonic crystal slabs can be divided into two major groups, high and weak vertical-confinement

systems, according to the choice of the planar waveguide [Jackson, J. D. (1975); Saleh, B. E. A.,

et al. (1991)]. For example, a self-standing membrane of Si or GaAs builds up a strong verti-

cal confinement, whereas GaAs/AlGaAS and InP/GaInAsP waveguides only provide weak vertical

confinement. This feature is related to the issue of out-of-plane scattering losses and to the light-

line problem. It is well known that the dispersion diagram of a waveguide is characterized by

the guided-mode region, below the light line, and by the leaky-mode region, above the light line,

where the light line represents the dispersion of light in the cladding material. In a similar way for

photonic crystals slabs, photonic bands can be truly guided modes or resonances with propagation

losses. If the waveguide is asymmetric, like for the system of Fig. 2, then there are two light lines:

one for the air cladding and one for the dielectric substrate. Thus, there can be modes that leak

in the substrate and not in the top cladding, and modes that radiate both in the substrate and

in air. Notice that these losses are intrinsic, and must not be confused with scattering related to

fabrication issues, as roughness or finite etch-depth.

It is clear that the problem of out-of-plane losses was, and is, one of the major concerns for the

application of photonic crystal slabs: which is the structure, with the wanted band gap properties,

possessing minimum out-of-plane losses? Hard question when no theoretical methods were avail-

able to calculate the photonic bands of finite-height photonic crystals and the propagation losses

of such systems. The choice of the waveguide, the choice of the layer thickness, the choice of the

etch-depth, and the choice of the patterning itself, were two many parameters to allow answering

the above question without the assistance of numerical modelling.

D’Urso, B., et al. (1998) tackled the problem of vertical confinement and finite etch-depth in

waveguide-based photonic crystals using a three-dimensional finite-difference time-domain method.
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Even though the study was conducted on micro-cavities, they gave important hints on how to min-

imize out-of-plane scattering losses, either by using a self-standing membrane configuration either

by deeply etching a waveguide embedded in a semiconductor heterostructure. Johnson, S. G., et

al. (1999) extended the plane-wave method to two-dimensional photonic crystal slabs by means

of a super-cell in the vertical dimension. The study is limited to the guided-mode region though,

because the plane-wave method is not able to handle the continuum spectrum of leaky bands. They

analyzed the effect of vertical confinement on photonic bands and on the band gap; one of the main

findings concerns the dependence of the size of the band gap on the waveguide thickness. The ap-

proach of Johnson, S. G., et al. (1999) is not applicable to any photonic crystal based on low-index

contrast slabs, because the guided-mode region is so narrow that the band gap lies always above

the light line. In fact, the most challenging problem was to calculate the dispersion of photonic

resonances, i.e. the bands in the radiative region. These bands do not have a discrete frequency,

but are characterized by a Lorentzian curve with a mean value, which defines the energy of the

band, and a width, which is proportional to out-of-plane losses.

For this class of systems, Benisty, H., et al. (2000) proposed a phenomenological model to include

losses in a simple two-dimensional calculation. The weak-vertical confinement is taken into account

by choosing as material index the effective index of the fundamental guided mode of the unpat-

terned waveguide. Out-of-plane losses are modelled within first-order perturbation theory, where

the perturbation is the patterning of the core layer. The final result is an imaginary part for the

dielectric constant that can be easily implemented in a two-dimensional calculation and nicely fits

experimental transmission spectra. They also suggested that weak confinement structures cause

lower out-of-plane losses than those with strong confinement. Finally, the idea of performing two-

dimensional simulations in place of three-dimensional ones seemed a practicable way for reducing

the modelling burden. However, many information are lost in the approximation and the method

itself had to be validated by comparison with ab-initio numerical results.

Other numerical methods were developed to solve the full electromagnetic problem of two-dimensional

photonic crystal slabs, but they did not accomplish the calculation of bands in the radiative region

[Whittaker, D. M., et al. (1999); Chow, E., et al. (2000); Lalanne, Ph., et al. (2001)]. The

finite-difference time-domain method, a powerful numerical technique, but quite demanding for
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three-dimensional problems, seemed to be the last choice. Chutinan, A., et al. (2000) and later

Ochiai, T., et al. A (2001) computed the dispersion relation for an air bridge system patterned

with a triangular lattice of air holes, below and above the light line. The latter also evaluated the

decay rate of leaky modes, finding that the width of the resonances has a non trivial dependence on

the k vector and varies from band to band. This was also pointed out by experiments performed

on various waveguide systems [Astratov, V. N., et al. A (1999); Lončar, M., et al. (2002); Patrini,

M., et al. A (2002); Galli, M., et al. B (2002)].

In order to have a deeper insight on photonic bands and on their radiative losses, Ochiai, T., et al.

B (2001) applied the nearly-free photon approximation [Cassagne, D., et al. (1996)] to photonic

crystal slabs to obtain analytical formulae for the dispersion relation and for the width of the res-

onances. The method is in good agreement with finite-difference time-domain simulations, but is

limited to slabs where the patterning can be considered a perturbation.

Very recently, Andreani, L. C. (2002) has implemented a fast and accurate numerical method to

calculate the band structure of waveguide-based photonic crystals. The formalism, based on the

expansion of the electromagnetic field on the guided modes of the unpatterned waveguide, will be

discussed in detail in this chapter. In practice, this technique requires nearly the same CPU time

than the plane-wave method applied to two-dimensional photonic crystals.

The study of photonic crystals and of their photonic bands can not neglect the importance of

symmetry. The definition of photonic crystal itself is based on a symmetry consideration: invariance

for discrete translations in one, two, or three dimensions. Moreover, the photonic band picture, as

a concept borrowed from Solid State Physics, should be accomplished by the classification of the

energy levels based on group theory. Contrary to the thorough classification of electronic states

in solids [Koster, G. F., et al. (1963); Bassani, F., et al. (1975); Cardona, M., et al. (1996)], a

similar work for photonic crystals remained somewhat marginal until recently.

Apart basic applications, such as defining the irreducible Brillouin zone or writing Maxwell’s equa-

tions for two independent polarizations [Joannopoulos, J. D., et al. (1995); Agio, M. (1999)], the

symmetry analysis became an important tool in guiding the investigation of new lattices or bases

to design wide-band-gap photonic crystals. Padjen, R., et al. (1994) examined how the shape of
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the basis influences the photonic bands. Cassagne, D., et al. (1996) performed the first symmetry

analysis of the photonic states for graphite, boron-nitride and triangular crystals, while Anderson,

C. M., et al. (1997) studied the symmetry-reduction in group 4mm photonic crystals to increase

the size of existing photonic band gaps or to create new ones by lifting some band degeneracies.

Labelling the empty lattice modes according to the irreducible representations of the crystal point

group and comparing them to the corresponding photonic bands helped much in the understanding

the band gap formation in two-dimensional photonic crystals [Cassagne, D., et al. (1996); Agio,

M. (1999)]. In two recent works, Ochiai, T., et al. A (2001) extended the same procedure to

two-dimensional photonic crystal slabs. In this case, the empty lattice dispersion relation is given

by the guided modes of the unpatterned slab.

Concerning the decay rates of resonances, Ochiai, T., et al. A (2001) found that the lifetime

of several bands is infinite at the Γ point. This phenomenon was explained by means of symme-

try considerations: the decoupling of the photonic bands from the diffraction modes in free space

originates from symmetry mismatch. Andreani, L. .C., et al. (2001), in a thorough study on the

symmetry properties of two-dimensional photonic crystals, put in evidence the necessity of group

theory in interpreting the optical properties of such systems. In fact, group theory gained the

deserved attention in combination with variable-angle reflectance experiments on two-dimensional

photonic crystals [Astratov, V. N., et al. A (1999); Galli, M., et al. A (2002); Patrini, M., et al.

A (2002)]. The reflectance spectra depend on the coupling of the free space field with the photonic

modes in the crystal. The coupling strength, which is inversely proportional to the band lifetime,

can be zero when symmetry mismatch occurs1.

As a final remark, it is worth to mention that also three-dimensional photonic crystals are under-

way as regards symmetry characterization. López-Tejeira, F., et al. (2002) used group theory to

classify the eigenstates in opal systems. Similarly to two-dimensional photonic crystal, the study

allowed to identify photonic bands that do not couple to the external field.

One of the motivations for investing research in photonic crystals is the possibility of molding

the flow of light [Joannopoulos, J. D., et al. (1995)]. The existence of a frequency range where

1An historical overview on this technique will be given in the next chapter.
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light propagation is forbidden, can be exploited by engineering defects into the bulk crystal. As

mentioned in the introductory chapter, a linear defect can be seen as a waveguide: the photonic

band gap provides lateral confinement, whereas the defect itself constitutes the core. On the other

hand, a point defect acts as a micro-cavity. Both micro-cavities and waveguides are the building-

blocks of optical communication and optoelectronics. In order to model effective integrated devices

based on photonic crystals, being able to calculate defect modes and their dispersion relation is of

primary interest.

The super-cell method was found to be suitable for this purpose [Meade, R. D., et al. (1994);

Joannopoulos, J. D., et al. (1995); Benisty, H. (1996); Villeneuve, P. R., et al. (1996)]. The defect

is embedded in large unit cell, so that the eigenstates do not overlap, and the eigenfrequencies

are computed by means of the plane-wave method. Another choice is to use the finite-difference

time-domain method [Qiu, M., et al. B (2000); Chutinan, A., et al. (2000)].

The dispersion relation of photonic-crystal waveguides was investigated since the early years of

research on photonic crystals; see J. Opt. Soc. Am. B, 10 (2) for a collection of works on this

subject. Benisty, H. (1996) carefully studied the guided modes of dielectric two-dimensional

photonic-crystal waveguides, focussing, in particular, on the role of the edge corrugations. In fact,

modes in corrugated waveguides can undergo contradirectional coupling (optical feedback), which

is characterized by a stop band. The existence of stop bands in the mode dispersion of photonic-

crystal waveguides was theoretically investigated also by Mekis, A., et al. (1998) and experimentally

confirmed by Olivier, S., et al. A (2001). Such stop bands are also called mode gaps or mini-stop

bands.

As a peculiarity with respect to conventional dielectric waveguides, photonic-crystal waveguides

can support two types of modes: index-guided modes and band-gap-guided modes. The formers

can exist only if the waveguide core has an index of refraction greater than that of the surrounding

photonic crystal. This is the same case of guided modes in dielectric waveguides. On the contrary,

band-gap-guided modes do not need a high-index core, because the confinement is provided by the

band gap. Thus, the occurrence of both index-guided and band-gap-guided modes in photonic-

crystal waveguides is likely to happen when the linear defect is created by removing air holes in a

photonic crystal etched in semiconductors. As a consequence, a photonic-crystal waveguide can be
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easily multi-mode even for small widths of the dielectric channel [Agio, M., et al. (2001)].

Meade, R. D., et al. (1994) suggested that dielectric waveguides in two-dimensional photonic-

crystal slabs could be easily fabricated. Likewise for photonic bands, the modes of linear waveguides

in photonic-crystal slabs are either truly guided, below the light line, either resonances, above the

light line. The application of the super-cell method within the plane-wave expansion faces the same

issues previously described for the calculation of photonic bands. Chutinan, A., et al. (2000) used

the finite-difference time-domain method to compute the dispersion relation of a photonic-crystal

waveguide in a self-standing dielectric membrane. One month later, Johnson, S. G., et al. (2000)

published a systematic analysis of different families of waveguides in photonic crystal slabs, giving

the conditions that must be applied in order to achieve single-mode operation. Since they used the

super-cell method, the study concerned only truly guided modes. Lončar, M., et al. A (2000),

instead, performed a comprehensive work on design and fabrication of waveguides in silicon-on-

insulator photonic crystal slabs. The design parameters were found by means of three-dimensional

finite-difference time-domain simulations, including the leaky modes region.

As discussed for bulk photonic-crystal slabs, the amount of out-of-plane losses for the waveguide

modes could preclude the application to real devices. The quantification of propagation losses in

photonic crystal waveguides, i.e. the width of the resonances in the waveguide dispersion relation,

was done experimentally by Lončar, M., et al. (2002). They were able to trace the dispersion

relation for leaky modes from 1440 to 1590 nm and found that the propagation losses decrease as

approaching to the mini-stop band located at 1500 nm. Recently, Andreani, L. C., et al. B (2002)

calculated the diffraction losses of line-defect modes in high-index-contrast photonic-crystal slabs,

confirming the above trend.

1.2 Maxwell Equations for a Photonic Crystal

The calculation of photonic bands is essentially the solution of Maxwell’s equations in a medium

with spatial periodicity in either the dielectric function, either the magnetic permeability or both.

The problem is treated with a formalism borrowed from Solid State Physics, following the analogy

with electrons in a periodic potential. Recasting Maxwell’s equations in a closed form for the
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magnetic field yields an eigenvalue problem similar to the time-independent Schrödinger equation.

The photonic band picture is the natural consequence of such formalism.

For linear media, Maxwell’s equations can be written in a general form as

∇ ·B = 0 , ∇×E +
1
c

∂

∂ t
B = 0 , (1.1a)

∇ ·D = 4πρ , ∇×H− 1
c

∂

∂ t
D =

4π

c
j , (1.1b)

where Eqs. (1.1a) are the homogenous equations and Eqs. (1.1b) are the non homogenous ones.

The tensor dielectric function ε̄(r, t) relates the electric field E with the electric displacement field

D through the constitutive relation

D(r, t) =
∫

ε̄(r, t− t′) ·E(r, t′)dt′ . (1.2)

A similar relation connects the magnetic field H to the magnetic induction field B through the tensor

magnetic permeability µ̄(r, t). In this context, it is assumed that the media composing the photonic

crystal are isotropic, i.e. the dielectric and magnetic tensors reduce to scalars ε̄(r, t) ⇒ ε(r, t) and

µ̄(r, t) ⇒ µ(r, t), the dielectric function is non dispersive ε(r, t − t′) = ε(r)δ(t − t′), real and non

negative, the media are non magnetic, i.e. B = H, and no free charges nor currents ρ = 0 and

j = 0. With these hypotheses, Maxwell’s equations are simplified to

∇ ·H = 0 , ∇×E +
1
c

∂

∂ t
H = 0 , (1.3a)

∇ · ε(r)E = 0 , ∇×H− 1
c

∂

∂ t
ε(r)E = 0 . (1.3b)

Thanks to the linearity of Maxwell’s equations, it is convenient to look for solutions for harmonic

fields

E(r, t) = E(r)e−ıωt , H(r, t) = H(r)e−ıωt . (1.4)

The general solution can be obtained as a superposition of harmonic modes. Plugging the for-

mulae (1.4) into Eqs. (1.3a) and (1.3b), in a few simple steps it is possible to recast Maxwell’s

equations in a closed form for either the magnetic or the electric fields

∇ ·H(r) = 0 ∇×
(

1
ε(r)

∇×H(r)
)

=
ω2

c2
H(r) (1.5a)

∇ · ε(r)E(r) = 0 ∇×∇×E(r) =
ω2

c2
ε(r)E(r) , (1.5b)
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where the equations at the right side are the analog of the time-independent Schrödinger equation.

Notice that in this case, the potential ε(r) enters as a multiplication factor, instead of being summed

to the free “hamiltonian”, as it is for electrons. Moreover, whereas the Schrödinger wave-function

is a scalar, the electric and magnetic field have three components that are mixed by the spatial

dependent dielectric function. These features make Eqs. (1.5a) and (1.5b) more complex than

the single-electron Schrödinger equation. It is more convenient to work with Eqs. (1.5a), because

the magnetic field is transverse and the master equation has the form of an eigenvalue problem.

On the contrary, the divergence equation for the electric field involves the dielectric function and

the “hamiltonian” equation is more complicated, being a generalized eigenvalue problem. For this

reason, the solution of the electromagnetic problem will be carried out using Eqs. (1.5a), which is the

standard choice adopted by the research community. For the other possibility, namely Eqs. (1.5b),

please refer to Agio, M. (1999).

Up to now, the derivation of the master equation is valid for any system for which the initial

assumptions are fulfilled, without further specifications. To solve the electromagnetic problem for

a photonic crystal, it is necessary to impose that the dielectric function is periodic. The periodicity

can be in one, two, or three dimensions and, correspondingly, the photonic crystal is one-, two-,

or three-dimensional. Looking at Fig. 1, notice that the dielectric function of a photonic crystal

is made of a unit cell repeated in space according to a well defined pattern. All of that can be

reduced to two concepts: basis and lattice. The lattice defines the spatial arrangement of the unit

cell; the basis specifies the content of the unit cell2. For example, the basis of a three-dimensional

photonic crystal can be a dielectric sphere in air or a dielectric cube in air. The lattice is generated

by linear combination of the so-called primitive vectors ai, which are determined by the minimum

translations that leave the dielectric function unchanged. Choosing a reference frame and placing

a lattice point at the origin of it, any other lattice point is in one-to-one correspondence with a

vector R, linear combination of ai; in mathematical terms, the lattice is defined by a vector space

V, with basis {ai}. The dimensionality of V equals the number of dimensions in which the dielectric

function is periodic. Therefore, a one-dimensional photonic crystal will have one primitive vector,

a two-dimensional photonic crystal will have two primitive vectors, and so on. The unit cell has

2Notice that, given lattice and basis, the choice of the unit cell is not unique.
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the same dimensions of V and the space Ac that occupies is determined by the primitive vectors:

Ac =





|a1| , 1D;

|a1 × a2| , 2D;

|a1 · (a2 × a3)| , 3D.

(1.6)

In this framework, the dielectric function of a photonic crystal has the property

∀R ∈ V, ε(r + R) = ε(r) . (1.7)

In other words, the photonic crystal is invariant for any discrete translation defined by a vector

R ∈ V. To understand the implications of the invariance for discrete translations, it is helpful to

work in terms of symmetry transformations and use the operator formalism.

The master equation for the magnetic field can be rewritten in a general form as

Ô(r)H(r) = λH(r) , with Ô(r) = ∇×
(

1
ε(r)

∇× , and λ =
ω2

c2
.

It is easy to show that Ô is an hermitian positive definite operator. This guarantees that the

eigenvalues are real and non negative, and that a complete set of orthonormal eigenfunctions does

exist. Being T̂R the unitary operator3 associated to a discrete translation R, the rule for the

transformation reads

Ô′ = T̂RÔ T̂−1
R ε′ = T̂Rε T̂−1

R H′(r) = (T̂RH)(T̂−1
R r) . (1.8)

Since the photonic crystal is invariant for this kind of transformation, i.e. is a symmetry transfor-

mation for the system, the operator Ô and the dielectric function ε are left unchanged: Ô′ = Ô

and ε′ = ε. What happens to H′?

1.2.1 The Bloch-Floquet Theorem

The application of the operator T̂R to the master equation yields a new eigenvalue problem for

the transformed field H′, but, since Ô commutes with T̂R, it is easy to show that H′ must satisfy

3The operator acts also on the field components of H. For the dielectric function, instead, the operator TR acts
only on the spatial coordinates.
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the same equation for H.

Ô(r)H(r) = λH(r) ⇐⇒ Ô(r)T̂RH(r) = λT̂RH(r) .

Such condition is fulfilled if H′ is equal to H within a multiplication factor, which implies that H

is, in the most general form, a linear combination of degenerate eigenfunctions of the translation

operator T̂R

T̂RH(r) = αH(r) . (1.9)

The eigenfunctions of T̂R are plane waves and the eigenvalues are complex numbers of unitary

modulus:

fk(r) = f̂eık·r T̂Rfk(r) = e−ık·Rfk(r) α = e−ık·R ,

where k is the wave-vector. Notice that all the eigenfunctions fk′(r) and fk(r), with k′ = k + G so

that G ·R = 2nπ, are degenerate. The condition

G ·R = 2nπ (1.10)

is not only a mere scalar product, but defines the dual space G of the vector space V. If {ai} is the

basis for V, the basis of the dual space (co-basis) is {gi}; any dual-space vector G can be obtained

as a linear combination of gi. Therefore, two eigenfunctions fk′(r) and fk(r) are degenerate if

k′ − k ∈ G. The general solution of the master equation is therefore

Hk(r) =
∑

G∈G
c(k + G)fk+G(r) . (1.11)

The divergence condition ∇·Hk(r) = 0 is automatically fulfilled if (k + G) · fk+G = 0, i.e. fk+G(r)

is also transverse. Since Hk(r) is also eigenfunction of T̂R with the same eigenvalue α of fk(r), the

application of T̂R to Hk(r) yields

T̂RHk(r) = Hk(r−R) = e−ık·RHk(r) . (1.12)

Eq. (1.12) represents the so-called Bloch-Floquet theorem, which can be written also as

uk(r) = e−ık·r ∑

G∈G
c(k + G)fk+G(r) =⇒ Hk(r) = eık·ruk(r) . (1.13)
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It is easy to show that uk(r) has the same periodicity of the dielectric function. The Bloch-Floquet

theorem states that the general solution of a master equation invariant under T̂R is a periodic

function multiplied by a phase factor exp(ık · r). The period of uk(r) is determined by T̂ai .

The operator formalism and the use of symmetry have helped in finding the general form for

the solution of Maxwell’s equation in a photonic crystal. What has been derived is also valid for

the electric field Ek(r). Nevertheless, the knowledge of one field, determines the other one by

straightforward application of Maxwell’s equations.

From Eq. (1.11), it is evident that Hk′(r) = Hk(r) if k′ − k ∈ G, because of the sum over the G

vectors. In other words, to two different k do not necessarily correspond different solutions Hk(r).

This feature is due to the invariance of the system under discrete translations and the physical

meaning is that in a photonic crystal the momentum k is conserved within a vector G, i.e. k is

not a “good quantum number” for the system.

The wave-vectors k span the so-called reciprocal space, which is the dual space of the Euclidean

space R3. The reciprocal space K3 can be divided into classes of equivalence [k], according to the

relation of equivalenceR = {(k,k′) ∈ K3×K3 : k′ − k = G ∈ G}. Now, each class of equivalence [k]

points to different Hk(r), where this time k is a representative of the class. The class of equivalence

[k] of the momentum k is conserved in a photonic crystal, i.e. [k] is now a “good quantum number”.

The representative for each class [k] is called the Bloch vector k. The choice of the Bloch vector is

not unique, because it is just an element of its class of equivalence. Nevertheless, it is convenient

to work with Bloch vectors that lend themselves to a “physical interpretation”. Usually, the Bloch

vector is taken as the smallest element of the class, in modulus. The ensemble of such Bloch vectors

defines the so-called first Brillouin zone, shortly Brillouin zone (B.Z.)

B.Z.
.=

{
k ∈ K3 : |k| = min

z∈[k]
(|z|)

}
. (1.14)

Similarly to what has been done for the photonic crystal in real space, it is possible to define a unit

cell in the reciprocal space. Correspondingly, there will be a reciprocal lattice that determines how

the unit cell tiles the reciprocal space. Again, the choice of the unit cell is not unique. The direct

lattice is associated to the vector space V, the reciprocal lattice is associated to its dual space G.

The primitive vectors are ai for the direct lattice and gi for the reciprocal lattice. An expression
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for gi in terms of ai is readily given by solving Eq. (1.10) for the primitive vectors,

ai · gj = 2π =⇒





gi = 2π
aj × ak

ai · (aj × ak)
, 3D;

gi = 2π lim
δ→0

aj × δk̂

ai · (aj × δk̂)
, 2D;

g1 =
2π

|a1| â1, 1D;

(1.15)

where k̂ gives the direction of the z axis and i, j, k label the primitive vectors. According to

the definition of Eq. (1.14), the Brillouin zone is the region delimited by cutting the reciprocal

space with planes perpendicular to the primitive vectors and distant |gi/2| from the origin. Thus,

once the primitive vectors of the reciprocal lattice have been calculated, the Brillouin zone can be

easily drawn. For a cubic (3D) or square (2D) lattice, the reciprocal primitive vectors are simply

gi = 2π
|ai| âi. This is not the case for other lattices, like the triangular lattice for instance. Fig. 1.1

shows the Brillouin zone for the photonic crystals displayed in Fig. 1. For the one-dimensional

photonic crystal, the Brillouin zone is B.Z. = {k = (k1, 0, 0) ∈ K3 : 2k1 ∈ (−g1, g1]}, where k1 is

the x component of the Bloch vector and g1 is the modulus of the primitive vector g1, which has

been aligned parallel to the x axis. For the two-dimensional photonic crystal, the Brillouin zone4

B.Z. = {k = (k1, k2, 0) ∈ K3 : 2k1 ∈ (−g1, g1]∧ 2k2 ∈ (−g2, g2]}; for the three-dimensional photonic

crystal, the Brillouin zone is B.Z. = {k = (k1, k2, k3) ∈ K3 : 2k1 ∈ (−g1, g1]∧2k2 ∈ (−g2, g2]∧2k3 ∈
(−g3, g3]}.

1.2.2 The Band Structure

The eigenfunctions of the master equation can be classified by means of the Bloch vector k.

Besides the eigenfunctions, the Bloch vector can also label the corresponding eigenvalues λ. As

k varies inside the Brillouin zone, the eigenvalues obey to a certain dispersion relation λ = λ(k).

There is no one-to-one correspondence between the Bloch vector and the solutions of the master

equation. In fact, it is possible that two solutions Hk(r) have the same Bloch vector, but different

expansion coefficients c(k + G) in Eq. (1.11). There are infinite choices for c(k + G) yielding

4Notice that the Brillouin zone is (−g1, g1], because, since |−g1| = g1, ±g1 belong to the same class of equivalence.
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Figure 1.1 Brillouin zone for the photonic crystals of Fig. 1: 1D (left),
2D (center), 3D (right). The bold lines represent the primi-
tive vectors gi of the reciprocal space. The gray shaded areas
correspond to the irreducible Brillouin zone.

independent linear combinations of the basis functions fk+G(r). The ensemble of the independent

linear combinations has the same cardinality of the groupG = {G = lg1+mg2+ng3; (l, m, n) ∈ Z3},
isomorphous to Z3. By simply counting the number of triplets (l, m, n) ∈ Z3, it is evident that

Z3 has the same cardinality of N?. Therefore, it is consistent to add a label n ∈ N? to Hk(r) to

represent a certain linear combination of the basis functions. At the same time, the label is also

attached to the corresponding eigenvalue λ.

Hk,n(r) =
∑

G∈G
cn(k + G)fk+G(r) λ = λn(k) . (1.16)

In addition to the Bloch vector and the index n, there is also another important degree of freedom

that characterizes the solutions of the master equation: the polarization σ. The magnetic field

is a three-vector component, but only two components are independent because of the divergence

equation. As a consequence, for each choice of k, n there are two independent solutions with

different polarization. However, it is found that, in general, the polarization is not independent

of the Bloch vector: σ = σ(k). This is because the polarization conservation relies on a plane

of symmetry, which might change with the Bloch vector. For such reason, it is convenient to

absorb the polarization degree of freedom in the index n. Only in specific cases, where at least one

polarization is independent of the Bloch vector, the index σ is used to label the eigenfunctions and

the eigenfrequencies. For instance, it will be shown that this is the case for in-plane propagation

in two-dimensional photonic crystals.
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The “quantum numbers” k, n are therefore used to classify the eigenfunctions and the eigenval-

ues of the master equation. The step to the concept of photonic band is short. The eigenfrequencies

ω/c =
√

λ take on the labels k, n =⇒ ω = ωn(k). Calling n the band index, the n-th photonic band

is defined as the portion of the spectrum λ with dispersion ωn(k), as k varies inside the B.Z.. The

photonic band structure is just the ensemble of photonic bands, with n running from 1 to ∞.

Before proceeding, it is worth to remark that the spectrum λ can be further classified by

considering other symmetry properties of the photonic crystal [Joannopoulos, J. D., et al. (1995);

Agio, M. (1999)]. For instance, the invariance of the master equation under time reversal yields

ωn(k) = ωn(−k). This means that the band structure can be calculated reducing the B.Z. to

non-negative Bloch vectors, since the other part has exactly the same spectrum. The invariance

under discrete translations has already been considered and it leads to the Bloch theorem. Instead,

the symmetry transformations with a fixed point (rotations, inversion, reflections), gathered in the

point group of the crystal, have not been used yet. Thanks to these transformations, the calculation

of the band structure can be reduced up to the so-called irreducible Brillouin zone. In Fig. 1.1,

the irreducible Brillouin zone is marked with gray. Notice that the irreducible zone can be much

smaller than the whole Brillouin zone, specially for three-dimensional photonic crystals.

Furthermore, to avoid solving the master equation for every point of the irreducible Brillouin zone,

it is often enough to do it along the symmetry lines, because they correspond to a higher degree of

symmetry with respect to the internal points and, for this reason, they are more representative.

1.2.3 The Photonic Band Gap

A photon with energy ω propagates in a photonic crystal, only if ∃ (k, n) : ω = ωn(k). Thus,

the spectral region [ω1, ω2] for which ∀ω ∈ [ω1, ω2],@ (k, n) : ω = ωn(k) is called the photonic band

gap. Photonic band gap means that in the frequency window [ω1, ω2] there is a null density Of

states (D.O.S.) ρ(ω), which is defined as

ρ(ω) =
∑

n

∑

k∈B.Z.

δ(ω − ωn(k)) (1.17)
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The D.O.S. is another important quantity characterizing the photonic crystal. Contrary to the

smooth D.O.S. for an homogenous medium, the D.O.S. of a photonic crystal presents jumps

with peaks and dips around a mean value given by the effective medium theory [Kirchner, A.,

et al. (1998)]. The calculation of the D.O.S. is an important check for the existence of a photonic

band gap, because it accounts for all the Bloch vectors in the B.Z., whereas the band structure is

often limited to the symmetry lines of the B.Z.. However, the present discussion deals only with

results on the band structure.

Figure 1.2 The formation of a band gap in a 1D photonic crystal. Left: the
multilayer as 1D photonic crystal; a is the lattice constant and
l1, l2 are the thicknesses of the layers. Right: (a) Free-photon
dispersion relation for a medium with εd = 13 folded in the 1D
Brillouin zone. (b) Photonic bands of a multilayer; parameters:
ε1 = 11, ε2 = 13 and l2/l1 = 1. n is the band index.

To better understand the concept of photonic band structure and the formation of a photonic

band gap, it is convenient to consider the photonic band structure of a simple one dimensional

system: the multilayer. The left image in Fig. 1.2 is an example of a one-dimensional photonic

crystal obtained stacking layers of two dielectric media. The lattice constant is a and the periodicity

is along the x axis; the system is homogenous in the other directions y, z. Recalling Eqs. (1.14)
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and (1.15) the B.Z. is (−π/a, π/a]. The right panel of Fig. 1.2 compares the band structure of an

homogenous medium (a), with the band structure of a multilayer (b) for propagation along the x

axis, i.e. k = (k, 0, 0). The material parameters for both systems are given in the caption. The band

structure (a) is obtained by simply folding the dispersion relation ω/c = k/
√

εd when it reaches

the edge of the B.Z.. The band structure (b), instead, is calculated by numerical solution of the

master equation. Notice that for the case (b) a band gap opens between the first two bands. The

mathematical reason is that the free-photon bands n1, n2, which are degenerate for k = π/a, are

split by the potential due to the periodic dielectric function, according to the perturbation theory

of degenerate states. Physically, the modes with ω in the band gap undergo destructive interference

that causes exponential decay as they travel through the layers. Indeed, for a wave propagating in

a photonic crystal with k = π/a, the phase shift of the forward-mode after m unit cells is exactly

exp(ıkma) = (−1)m. The phase shift of the backward-mode, reflected at the m-th unit cell, is

−(−1)m, because of the -1 gained upon reflection. The backward-mode has to travel other m unit

cells before returning to the starting point and accumulates another phase shift (−1)m. The total

phase shift for the backward-mode is −(−1)m(−1)m = −1. Therefore, the backward-mode returns

always with destructive interference, independently of the unit cell where it was reflected.

Particular attention is needed for the two modes belonging to the lower and upper band edge:

ω1(π/a) and ω2(π/a). They are extended modes since they are Bloch waves, but, at the same time,

they should undergo destructive interference because of k = π/a. Actually, these modes are not

propagating modes, their group velocity vg = x̂∂ω(k)/∂k is zero, but rather stationary waves5.

As regards the first band, as k → 0, also ω → 0. This is the long-wavelength limit, according

to which, the photonic crystal can be treated has an effective homogenous medium, with a linear

dispersion ω/c = k/
√

εeff , where εeff is the effective dielectric function. For a multilayer, εeff has an

analytical expression: εeff = (ε1l1 + ε2l2)/a [Agranovich, V. M., et al. (1985)]. For papers on the

effective dielectric function in two- and three-dimensional photonic crystals, refer to Datta, S., et

al. (1993); Kirchner, A., et al. (1998); Halevi, P., et al. (1999).

5A propagating wave has only one phase factor (k · r−ωt), whereas a stationary wave possesses two phase factors,
one in space (k · r) and another one in time (ωt).
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Scaling properties

One of the differences between photonic crystals and conventional crystals is that photons,

contrary to electrons, do not have a fundamental length. For electrons, the fundamental length

is the Bohr radius a◦. This feature leads to the scaling invariance for the macroscopic Maxwell’s

equations. The photonic crystal can be expanded or reduced via the following transformation

ε′(sr) = ε(r) , (1.18)

with s as scaling parameter. It is easy to show that the eigenfunctions and the eigenvalues of the

master equation scale with ε(r): H′(sr) = H(r) and ω′ = ω/s. This property is of particular

interest for experimentalist, because it allows the so-called lithographic tuning [Labilloy, D., et al.

A (1997)]. The lithographic tuning consists of sampling a portion of the spectrum not by changing

the wavelength of the source, but changing the lattice constant of the photonic crystal.

Another scaling properties is the following. Assume that the dielectric function is multiplied by a

factor s,

ε′(r) = s2ε(r) . (1.19)

In this case the eigenvectors do not change, whereas the eigenvalues scale according to s: ω′ = ω/s.

This implies that for a photonic crystal made of two media ε1, ε2, the eigenfrequencies depend only

on the ratio ε1/ε2, within a multiplication factor s.

1.2.4 The Plane-Wave Expansion Method

After a decade of research in photonic-band-gap materials, several techniques have been pro-

posed for solving Maxwell’s equations [John, S., et al. (1988); Pendry, J. B., et al. (1992); Qiu,

M., et al. A (2000)]. Nevertheless, the plane-wave expansion method has become the standard

de facto for computing the band structure of semiconductor-based photonic crystals. The method

is based on the truncation of the sum in Eq. (1.11), reducing the master equation to a matrix

eigenvalue problem. The coefficients cn(k + G) and the eigenfrequencies ωn(k) are obtained by

standard numerical diagonalization of the resulting “hamiltonian”.
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Since the basis functions fk(r) are plane waves, the Eq. (1.11) is explicitly written as

Hk(r) =
∑

G∈G

∑
σ

cσ(k + G)f̂σeı(k+G)·r , (1.20)

where σ = σ(k + G) represents the two polarizations of f̂σ, with f̂σ · (k + G) = 0. By truncating

the index G ∈ G to a cut-off K : |G| < K, Eq. (1.20) becomes a finite expansion. The cut-off

is the approximation imposed by the numerical method; in fact, it would be impossible to store

infinite arrays in the computer memory. Eq. (1.20) is nothing but the Fourier expansion of the

magnetic field truncated to a cut-off and cσ(k + G) are its Fourier coefficients. The next step is to

rewrite the master equation (1.5a) in the Fourier space by calculating the matrix elements of the

“hamiltonian” operator Ô on the plane-wave basis. The result is

∑

G′,σ′
Hσ,σ′

G,G′cσ′(k + G′) =
ω2

c2
cσ(k + G) , (1.21)

where the “hamiltonian” matrix is

Hσ,σ′
G,G′ = |k + G||k + G′|ηG,G′




f̂σ2 · f̂σ′2 −f̂σ2 · f̂σ′1
−f̂σ1 · f̂σ′2 f̂σ1 · f̂σ′1


 (1.22)

and the matrix [[η]] = [[ε]]−1 is the inverse of the dielectric function Fourier transform

εG,G′ =
1
Ac

∫

Ac

ε(r)eı(G−G′)·rdr , (1.23)

where Ac is the space occupied by the unit cell. [[H]] is a square matrix with dimensions 2N × 2N ,

[[η]] and [[ε]] have dimensions N × N instead; N is the number of G vectors below the cut-off.

Likewise the “hamiltonian” operator Ô associated to the master equation, H is hermitian with

non-negative eigenvalues.

Eq. (1.22) is the eigenvalue problem for [[H]]. Standard numerical diagonalization of [[H]] yields the

eigenfrequencies ωn(k) and, optionally, the coefficients cn(k + G). Notice that for each diagonal-

ization, the routine outputs a set ωn(k), with n = 1, . . . , 2N , corresponding to the energies of 2N

bands for a fixed Bloch vector k. In order to calculate the whole band structure, the operation has

to be repeated for a certain ensemble of k vectors in the B.Z., usually the edges of the irreducible

B.Z..
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The truncation of the sum in Eq. (1.20) is the trick that allowed numerical solution of the mas-

ter equation. In fact, the exact Fourier transform of the operator Ô would be a matrix of infinite

dimensions, whereas [[H]] is limited to 2N × 2N . For this reason, the matrix eigenvalue problem

is an approximation of Maxwell’s equations and an error will occur in the calculated eigenfrequen-

cies. Calling λn(k) the true eigenvalue and λ
(N)
n (k) the eigenvalue calculated with the numerical

routine, the error committed in evaluating the band energies will be ∆(N)
n (k) = |λn(k)− λ

(N)
n (k)|.

As N → ∞, the “hamiltonian” [[H]](2N) should approach the true Fourier transform of Ô and,

consequently, the band energies should converge to the true values, i.e. ∀k, ∀n; ∆(N)
n (k) → 0 as

N →∞. Now the issue is: is this statement true or not? Also, if true, how fast is the convergence?

The core of the problem consists in the Fourier transform of the dielectric function ε(r), which

enters the operator Ô as 1/ε(r). When the master equation is transformed into the Fourier space,

there are two choices for the dielectric function: take the Fourier transform of 1/ε(r) ⇒ [[η]] = [[1/ε]]

or take the Fourier transform of ε(r) and invert the matrix ⇒ [[η]] = [[ε]]−1. Contrary to intuition,

as N → ∞, [[1/ε]](N) 6= [[ε]](N)−1
. This result stems from the jump discontinuities of the dielec-

tric function at the interfaces among the media of the photonic crystal. The inequality signifies

that the convergence of the plane-wave expansion method is not a trivial problem at all. In a

paper on the factorization of Fourier series of discontinuous periodic functions, Li, L. (1996) gave

mathematical foundations that the correct choice for uniform convergence is [[η]] = [[ε]]−1, which is

called the inverse rule. The fact is that [[ε]]−1 uniformly satisfies the boundary conditions for the

electromagnetic field, while [[1/ε]] does it only non uniformly. The idea of taking the inverse of the

Fourier transform has been used since Ho, K. M., et al. (1990), but without the rigorous motivation

given by Li, L. (1996). That is why it is also known as Ho’s method. For instance, considering

two-dimensional photonic crystals, the ∆(N)
n (k) caused by [[η]] = [[ε]]−1 is below 1% already with N

of the order of 100. With [[η]] = [[1/ε]], ∆(N)
n (k) is still above 1% for more than 300 plane waves.

The plane-wave expansion method is thus able to output accurate eigenfrequencies with a moderate

CPU time, provided the inverse rule is used. Notice that standard diagonalization and inversion

routines are O(N3) operations; i.e. doubling the number of plane waves increases the CPU time by

eight times. That is why the method is very efficiently applied to two-dimensional photonic crys-

tals. For three-dimensional photonic crystals, where the number of G vectors is of the order of one
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thousand or more, the method start to approach its numerical limit as regards the CPU time and

the accuracy of the diagonalization process. Nevertheless, improved algorithms of the plane-wave

expansion method allow to use thousands of G vectors for an extremely accurate determination of

the eigenfrequencies [Meade, R. D., et al. (1993)].

It has been shown that the electromagnetic problem for a photonic crystal can be treated within

an operator formalism by recasting Maxwell’s equations in a closed form for either the electric either

the magnetic fields. The translational symmetry of the dielectric function implies that the solutions

have to be Bloch waves. The frequency spectrum is organized in the band structure picture, with

the classification of the energy levels in terms of Bloch vector k and band index n. The band

structure is obtained by numerical solution of the master equation by means of the plane-wave

expansion method. These concepts and tools can now be applied to the study of semiconductor-

based two-dimensional photonic crystals.

1.3 Two-Dimensional Photonic Crystals

A two-dimensional photonic crystal is characterized by a dielectric function periodic in a plane

and homogeneous in the direction perpendicular to it, see Fig. 1. In other words, choosing a

reference frame x − y − z, the dielectric function is ε = ε(x, y). Correspondingly, the system has

a two-dimensional lattice with two primitive vectors in both direct and reciprocal space. The

reciprocal primitive vectors are given by Eq. (1.15). The discussion is focussed on two-dimensional

photonic crystals made of a triangular lattice of air holes in a semiconductor material, because it

is one of the most attracting structures [Meade, R. D., et al. (1992); Labilloy, D., et al. A (1997);

Kramper, P., et al. (2001); Galli, M., et al. A (2002)]. Moreover, the band structure is calculated

only for in-plane propagation, that is k = (kx, ky, 0). Nevertheless, many results are valid for

two-dimensional photonic crystals in general.

Fig. 1.3 shows a top view of the two-dimensional photonic crystal under investigation (left

panel) and the corresponding reciprocal lattice, with the Brillouin zone and the symmetry lines

(right panel). The holes radius is r, the lattice constant is a and ε is the background dielectric
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Figure 1.3 Top view of a 2D photonic crystal made of a triangular lattice
of air holes, with radius r, in a medium with dielectric function
ε (left panel). The corresponding 2D reciprocal space and the
hexagonal Brillouin zone with symmetry points and lines (right
panel). a = |ai| is the direct space unit vector and b = |gi| is
the reciprocal space unit vector.

function. The primitive vectors are a1 = a(1, 0) and a2 = a
(

1
2 ,
√

3
2

)
, and the unit-cell area is

Ac = a2
√

3
2 . By using Eq. (1.15), the reciprocal-space primitive vectors are g1 = 2π

a

(
1,− 1√

3

)
and

g2 = 2π
a

(
0, 2√

3

)
.

For in-plane propagation, the electromagnetic field can be classified into two modes: H -modes and

E -modes6. H -modes correspond to (Ex, Ey,Hz), E -modes to (Ez,Hx, Hy), where the field compo-

nents are functions of x, y only; the other components are zero. This result stems from a symmetry

property of the system: given a symmetry plane α, the electromagnetic field can be decomposed

into modes that are even or odd for reflection with respect to α, see Fig. 1.4. For a two-dimensional

photonic crystal, there are infinite mirror planes α ≡ x − y perpendicular to z, i.e. the electro-

magnetic field has to be even or odd for any plane, ∀z◦ ∈ R, α : z = z◦. This condition is fulfilled

only if the field components do not depend on z. The same result can be obtained working on

the master equation (1.5a) and on the plane-wave expansion (1.20). For in-plane propagation, the

basis functions fk+G(r) do not depend on z, and so do the fields Ek(r),Hk(r). The polarizations

σ are f̂σ1,k+G = (0, 0, 1) and f̂σ2,k+G = (fx, fy, 0) : f̂σ2,k+G · (k + G) = 0. Even though σ2 depends

on the vector k + G = (kx + Gx, ky + Gy, 0), the distinction between σ1 and σ2 is independent

6In literature, another nomenclature is often found: TE-modes for H -modes and TM-modes for E -
modes [Joannopoulos, J. D., et al. (1995)]; also p-modes for H -modes and s-modes for E -modes [Kirchner, A.,
et al. (1998)].
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α α

k k
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Figure 1.4 Even (a) and odd (b) modes with respect to a symmetry plane
α. For in-plane propagation in a 2D photonic crystal, the elec-
tromagnetic field can be decomposed into H -modes (a) and
E -modes (b).

of k + G, i.e. f̂σ1,k+G · f̂σ2,k+G′ = 0 ∀G,G′ ∈ G. Therefore, σ is a “good quantum number” for

the eigenfunctions and the eigenvalues: Hk,n,σ(r), ωn,σ(k). σ1 corresponds to H -modes and σ2

to E -modes. Plugging the polarizations in the master equation (1.5a), one obtains two different

“hamiltonian” for σ1 and σ2. In the Fourier space, the master equation is split into

∑

G′
(k + G) · (k + G′)ηG,G′cσ1(k + G′) =

ω2

c2
cσ1(k + G) , for H -modes; (1.24a)

∑

G′
|k + G||k + G′|ηG,G′cσ2(k + G′) =

ω2

c2
cσ2(k + G) , for E -modes. (1.24b)

Eqs. (1.24a) and (1.24b) lead to two band structures, one for H -modes and one for E -modes re-

spectively. Thus, a two-dimensional photonic crystal may have a band gap for one polarization,

or both. In the latter case, the band gap is complete. Notice that the existence of the addi-

tional quantum number σ allows “hamiltonian” matrices with dimensions N ×N in the plane-wave

expansion method, whereas for out-of-plane propagation the dimensions are 2N × 2N , like for

three-dimensional photonic crystals, where Eq. (1.21) must be used instead.
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1.3.1 The Band Structure

The band structure is calculated along the symmetry lines of the Brillouin zone: Γ − K, Γ −
M,K −M , see the right panel of Fig. 1.3, so that the Bloch vectors are given. The G vectors are

constructed by linear combination of the reciprocal-lattice primitive vectors gi. The last ingredient

is the explicit expression of the dielectric function Fourier transform. Performing the integral in

Eq. (1.23), the result is

εG,G′ =





(εair − εdiel)
2πr

AcG
J1(Gr) , if G 6= G′;

fεair + (1− f)εdiel , if G = G′;
(1.25)

where εair is the air dielectric constant (=1), εdiel is the material dielectric function (= ε), G =

|G−G′|, J1(x) is the Bessel function of the first order and f = πr2/Ac is the air filling factor.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M Γ K M

ω
a/

2π
c

Figure 1.5 Photonic bands of a 2D photonic crystal made of a triangular
lattice of air holes, with radius r = 0.3a, in a dielectric medium
with ε = 12. Solid (dashed) lines refer to H -modes (E -modes).

Fig. 1.5 displays the photonic band structure calculated7 for air holes, with radius r = 0.3a,

in a dielectric medium with ε = 12, typically Si or GaAs in the near-infrared frequency regime.

The system exhibits a photonic band gap only for H -modes (solid lines). For E -modes (dashed

7The number of plane waves used for the calculation is 109, if not otherwise stated.
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lines), the band gap is closed by the second band. Notice that the first bands of both H -modes and

E -modes have linear dispersion for ω → 0. This is the long-wavelength limit, already seen for

the multilayer studied in Sec. 1.2.3. The H -modes and E -modes dispersions have different slope

for ω → 0, i.e. the two modes have different effective dielectric function. The effective dielectric

function for E -modes is given by the analytical formula

εeff = fεair + (1− f)εdiel = εG,G , (1.26)

which is exactly the formula for the multilayer, with l1, l2 replaced by f, (1 − f). The effective

dielectric functions for H -modes does not have an analytic expression. Effective medium theory

gives two bounds for the effective dielectric function of H -modes. The true value is comprised

between the Maxwell-Garnett result

εeff = εdiel

(
1 +

2fα

1− fα

)
, (1.27)

where α = (εair − εdiel)/(εair + εdiel) is the depolarization factor, and the inverse Maxwell-Garnett,

obtained by interchanging the filling fractions, f and 1 − f , and the dielectric functions εair and

εdiel. The correct value is given by numerical solution of complicated equations [Kirchner, A.,

et al. (1998); Halevi, P., et al. (1999)]. Thus, in the long-wavelength limit, a two-dimensional

photonic crystal behaves like an homogenous uniaxial crystal8, where the optical axis is along the

z direction and the dielectric functions ε‖ and ε⊥ are the effective values for E -modes and H -

modes respectively. For two-dimensional photonic crystals ε‖ > ε⊥ always. The effective dielectric

tensor reads

ε =




ε⊥ 0 0

0 ε⊥ 0

0 0 ε‖




(1.28)

For finite frequencies the photonic crystal effects become important and the mean field approxima-

tion is more complicated [Kirchner, A., et al. (1998)]. Nevertheless, it is still meaningful to speak

in terms of effective dielectric function as the zero-th term in a perturbative expansion of the band

structure [Cassagne, D., et al. (1996); Agio, M. (1999)].

8That is true for the square and the triangular lattices. For lattices with a lower symmetry the crystal is biaxial,
with two effective dielectric functions for H -modes. See Ref. Halevi, P., et al. (1999).
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Looking again at Fig. 1.5, it is found that H -modes have a photonic band gap also around

ωa/2πc ∼ 0.6. However, the band gaps lying at higher frequencies are more sensitive to disorder,

contrary to the first band gap at ωa/2πc ∼ 0.25. Indeed, for the higher bands, the coefficients

cσ(k + G) with large k + G vectors have a stronger weight in the plane-wave expansion, contrary

to what happens for the lower bands. Disorder primarily affects the coefficients with large k + G

vectors, because they correspond to plane waves with small wavelength, more sensitive to roughness

and other irregularities. Since disorder is practically unavoidable in real samples, it is important to

devise photonic crystals where the desired properties are robust. With the current degree of quality

in the manufacturing processes of micron-size photonic crystals, one has to work with the first bands

[Benisty, H., et al. (1999)]. For a thorough analysis of disorder effects in two-dimensional photonic

crystal see Ref. Lidorikis, E., et al. (2000).

It has been shown that the band structure of Fig. 1.5 exhibits band gaps only for H -modes.

However, this is only the result of a particular choice of r and ε. It is interesting to see what

happens if one of the two parameters is varied. In theory, one could change the dielectric function

ε, but in practice, its value is determined by the choice of the material, which is very important

and, usually, has the precedence over the other parameters. For the most common semiconductor-

based photonic crystals (Si, GaAs, InP), ε is within 11-12. For this reason, only the hole radius is

considered as a free parameter.

Gap Maps

The existence of a complete photonic band gap is one of the most attracting features of photonic

crystals. If one wants to know whether the structure of Fig. 1.3 has a full band gap, or simply

locate the band gaps for each polarization, it would be necessary to examine a large number of

band structures, one for a given value of the hole radius r. It turns out, that is more convenient and

clear to visualize only the edges of the photonic band gap as a function of r in the the so-called gap

map. Fig. 1.6 shows the band gaps for the parameters of Fig. 1.5, with r/a varying from 0 to 0.5,

which corresponds to the closed-packed condition. There is a wide band gap for H -modes (solid

lines) that opens for r ≥ 0.17a and increases with the hole radius until it reaches the maximum

value for r ∼ 0.45a. Another band gap for H -modes occurs for a smaller range of r and at higher
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Figure 1.6 Gap map for the photonic crystal of Fig. 1.5. The regions de-
limited by solid (dashed) lines refer to H -modes (E -modes). A
complete photonic band gap opens for r > 0.41a (gray shaded
area).

frequencies. This is the second gap seen in the band structure of Fig. 1.5, where r = 0.3a.

Concerning the other polarization (dashed lines), the lowest frequency band gap is located around

r = 0.45a, with a steep profile that covers the frequency range ωa/2πc ∼ 0.35− 0.6. Smaller band

gaps appear at higher frequencies for r ∼ 0.4a. The map of the complete band gap is determined

by the intersection of the H -modes band gaps with the E -modes band gaps. This happens only

for r > 0.41a in the frequency window ωa/2πc ∼ 0.35 − 0.55 (gray shaded area). It is worth to

mention that the gap edges shift towards higher frequencies as the radius increases, in accordance

to the reduction of the effective dielectric constants ε‖ and ε⊥.

In order to obtain a complete photonic band gap in this system, it is necessary to have a high air

fraction. Such condition might be critical from the experimental point of view, because of intrinsic
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limits in the fabrication process. In fact, it would be difficult to reach high aspect ratios with holes

walls as thin as membranes. The alternative is to release the requirement of a full band gap and

work with a partial band gap using polarized light. For a two-dimensional photonic crystal of air

holes in a semiconductor one finds convenient to exploit the wide band gap given for H -polarization.

This point will be deepened in the chapter dedicated to wave propagation, where the existence of a

band gap is fundamental. Here and in the next chapter the attention addresses the band structure

as a whole, so that the peculiarity of a full band gap has a relative importance.

1.3.2 Symmetry Properties

The eigenvalues of the master equation (1.5a) are interpreted in terms of Bloch vector and band

index within the photonic band picture. Moreover, for in-plane propagation in two-dimensional

photonic crystals, the polarization is used as a further classification of the eigenfrequencies. All of

that is founded on certain symmetry properties of the system. The Bloch vector is a consequence of

the periodicity of the dielectric function, the separation into H -modes and E -modes stems from a

mirror symmetry. In the last paragraph of Sec. 1.2.2, it has already been mentioned how symmetry

can be exploited to work out the irreducible Brillouin zone. The aim of this section is to introduce

the use of group theory in studying the photonic band structure, in analogy to what has been done

for the symmetry analysis of electronic states in solids [Bassani, F., et al. (1975)]. The system

under investigation is always the two-dimensional photonic crystal of Fig. 1.3; however, in this case,

the hole radius is r = 0.2a, the lattice constant is given, a = 3µm, and the energies are expressed

in electron-Volt (eV).

Since the Bloch theorem already accounts for the translation invariance, the attention will be

focussed only on the point group of the system, which contains all the symmetry operations with a

fixed point. The photonic bands with Bloch vector k can be classified according to the small point

group at k. The small point group is the subgroup that leaves k invariant (apart from a reciprocal

lattice vector). The symmetry of a state Hk(r) is determined by the transformation rule given in

Eqs. (1.8), where T̂R is replaced by the operator associated to a transformation belonging to the

small point group. The electric field and the magnetic field components transform like a vector

and a pseudo-vector respectively. The symmetry properties related to the spatial coordinate r are
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Figure 1.7 Empty lattice bands for the photonic crystal shown in Fig. 1.3.
The average dielectric constant is ε‖ = 10.4, the lattice constant
is a = 3µm and the energies are in electron-Volt (eV). The
symmetry labels refer to E -modes.

found looking at the profile of Hk(r) and Ek(r). The notation is taken from Koster, G. F., et

al. (1963).

The point group for a triangular lattice with cylindrical holes is D6h, which is useful to view

as the direct product of C6v and Cs. C6v has a six-fold rotation axis (z) and six mirror planes

that form 60◦ angles among each other. Cs contains the identity and the reflection σxy. The small

point groups at the main symmetry points are D2h at M and D3h at K. The small point group

along the symmetry lines is C2v for the Γ − M , Γ − K and M − K directions. Notice that the

twofold axis of C2v differs for the three cases. For off-plane propagation, the specular reflection σxy

is not a symmetry operation anymore and the point group remains C6v only. The discussion will

be restricted to in-plane propagation.

For studying the electronic states in solids, it is often useful to work with the empty-lattice scheme,

which consists of the free-electron levels folded in the Brillouin zone for a given Bravais lattice. A

similar methodology can be applied to photonic bands, choosing the free-photon dispersion given

for an homogenous medium with the effective dielectric tensor of Eq. (1.28). Since the system is
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Figure 1.8 Photonic bands of the 2D photonic crystal of Fig. 1.3: (a)
E -modes, (b) H -modes. The lattice constant is a = 3µm, the
hole radius is r = 0.2a and the material dielectric constant is
ε = 12.
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uniaxial, H -modes and E -modes have to be studied separately. Nevertheless, since the air fraction

is small (f = 14.5%), H -modes can be treated with the same dispersion of E -modes with good

approximation: ε‖ ∼ ε⊥.

Fig. 1.7 shows the empty-lattice photonic bands for the considered structure, whose average dielec-

tric function is given by Eq. (1.26), that is ε‖ = 10.4. The folding of the free-photon dispersion

gives rise to degeneracies at the symmetry points and lines. The symmetry labels in Fig. 1.7 refer

to E -modes. They are derived by finding the characters of the symmetry operations of the small

point group acting on degenerate plane waves, and decomposing the resulting representation into

irreducible representations. For clarity, the procedure for the states at the Γ point is reported in

detail.

The first state (ω = 0) corresponds to the plane wave with G = (0, 0), which transforms like the

identical representation. Taking into account the symmetry of the transformation properties of the

electric field component Ez, the symmetry of this state is Γ−2 . The next state at Γ consists of the

plane waves with G = b(0,±1), b(±
√

3
2 ,±1

2), where b = 4π√
3a

= |gi|, and is six-fold degenerate. The

characters of the symmetry operations, taking into account the spatial dependence of the plane

waves as well as the transformation properties of the Ez field component, are

E C2 2C3 2C6 3C ′
2 3C ′′

2 I σh 2S6 2S3 3σv 3σd

6 0 0 0 −2 0 0 −6 0 0 2 0

and can be decomposed into the irreducible representations Γ+
4 +Γ+

5 +Γ−2 +Γ−6 . In a similar manner

one classifies the other states.

Fig. 1.8 displays the calculated photonic band structure for ε = 12 and r = 0.2a. Most of the

degeneracies of the empty lattice have been removed because of the potential due to the dielectric

function. Only the degeneracies imposed by the irreducible representations of the small point group

remain. The photonic bands at Γ and at K are non-degenerate or twofold degenerate; the bands at

the M point and along the lines are non-degenerate. In particular, notice that the twofold degen-

erate states at Γ can have Γ+
5 or Γ−6 symmetry for E -modes and Γ−5 or Γ+

6 symmetry for H -modes.

This originates from the different transformation properties of the electric and magnetic field under

the inversion operation. Along the lines, bands with the same symmetry anti-cross, while bands
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with different symmetry cross each other.

In conclusion, the photonic band structure of a two-dimensional photonic crystal can be classified

according the the irreducible representations of the small point group. For in-plane propagation,

the main consequence of symmetry is the decoupling of the electromagnetic field into H -modes and

E -modes. The use of group theory is helpful in understanding the formation of the photonic band

structure, with emphasis on the removal of degeneracy and on the crossing/anti-crossing of photonic

bands. These results are also important for the interpretation of the optical properties of photonic

crystals; for instance, the coupling of the Bloch waves with the external field.

As regards the photonic band gap, a two-dimensional photonic crystal made of a triangular

lattice of air holes in a dielectric medium exhibits a band gap for H -modes in a wide range of

the hole radius r. A complete band gap is found only for large filling ratios. Controlling light

propagation by means of a full band gap in a two-dimensional photonic crystal is quite a problem,

because of the absence of vertical confinement. This issue might preclude the use of two-dimensional

photonic crystals for certain functionalities. Moreover, a practical realization of a two-dimensional

photonic crystal in the near infrared is available only with macro-porous silicon [Lehmann, V.,

et al. (1990); Birner, A., et al. (1998)]. Also, the fabrication process of macro-porous silicon

photonic crystals does not easily allow the integration with electronic circuitry or the inclusion of

active layers, for instance, making its technological potential somewhat limited.

A plausible solution to all of these problems is the concept of finite-height two-dimensional photonic

crystal [Meade, R. D., et al. (1994)]. The idea is to etch a two-dimensional photonic crystal in

a planar dielectric waveguide so that the in-plane confinement is provided by the band gap, while

the vertical confinement is given by the conventional total internal reflection. Such structures can

be fabricated with top-down processes using lithographic techniques, which allow the integration

of metal contacts, quantum wells and other nano-structures. However, these promising statements

involve new issues that has to be understood, like the modification of the photonic band structure

with respect to the ideal two-dimensional case or the occurrence of out-of-plane diffraction losses.

The next section is aimed to formalize the new concepts and study the band structure of two-

dimensional photonic-crystal slabs.
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1.4 Two-Dimensional Photonic-Crystal Slabs

A two-dimensional photonic-crystal slab is made of a planar dielectric waveguide that is deeply

etched according to a two-dimensional pattern. In other words, the dielectric function is periodic in

the x−y plane and is a step-wise function in the vertical direction z: ∀R ∈ V, ∀z ∈ R; ε(x + R, z) =

ε(x, z), with x = (x, y) and V is the vector space associated to the two-dimensional lattice. The

number of parameters involved in the characterization of these systems is large: the structure of the

planar waveguide (layers, thicknesses, dielectric functions), the two-dimensional photonic crystal

(lattice and unit cell) and the etch depth. Nevertheless, there are few representative cases that

are able to address all the important features pertaining to two-dimensional photonic-crystal slabs.

Since the attention is focussed on the effects due to the planar waveguide, the photonic crystal

pattern is chosen una tantum as a triangular lattice of air holes. At this stage, the etch depth is

considered as infinite.

Planar waveguides can be divided into two main classes: symmetric and asymmetric waveguides;

the symmetry is referred to reflection with respect to a plane placed in the middle of the core layer.

For a symmetric waveguide, the cladding layers above and below the core are equal. Then, the

waveguide may give strong or weak confinement depending on the dielectric contrast between core

and cladding. The configurations that are presented here regard two symmetric waveguides, one

with strong confinement and the other one with weak confinement. For the case of an asymmetric

waveguide, please refer to Patrini, M., et al. A (2002) and Peyrade, D., et al. (2002). Fig. 1.9

gives examples of planar waveguides patterned with a triangular lattice of air holes. The thickness

of the core layer is d, whereas the cladding layers are considered as semi-infinite. The low panels

display three types of planar waveguide: (d) a dielectric self-standing membrane, also known as

air bridge, (e) waveguide based on a semiconductor heterostructure, for instance a GaAs/AlGaAs

system, (f) waveguide with strong asymmetry, like a silicon-on-insulator wafer. The air bridge

is a typical strong-confinement waveguide, while the GaAs/AlGaAs system belongs to the weak-

confinement case; both waveguides are symmetric. The values of the dielectric function given in

Fig. 1.9 are appropriate to typical semiconductors (Si, GaAs, AlGaAs).

The photonic band structure of these systems is more complicated than for ideal two-dimensional
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Figure 1.9 Upper panels: (a) slab waveguide of thickness d patterned
with a triangular lattice of air holes, (b) top view, (c)
the 2D Brillouin zone with symmetry points. Lower pan-
els: (d) strong-confinement symmetric waveguide, i.e. pat-
terned self-standing dielectric membrane (air bridge), (e)
weak-confinement symmetric waveguide (e.g. patterned Al-
GaAs-GaAs-AlGaAs system), (f) patterned asymmetric waveg-
uide (e.g. silicon-on-insulator).

photonic crystals, because of the finite-height of the two-dimensional pattern. For symmetric

waveguides, the modes are still even or odd with respect to the mid-plane of the core layer. However,

they are not H -modes or E -modes anymore, because the fields are also function of the z coordinate.

Nevertheless, it makes sense to call them H-like modes or E-like modes. For asymmetric waveguides

such separation breaks down and the band structure has to be calculated by solving the master

equation with all the transverse field components. However, the main complication with respect to

two-dimensional photonic crystals consists of the so-called light-line problem and of the existence of

Bloch modes with a cut-off. In fact, these structures support two kinds of modes. If the waveguide

thickness is not too small, guided modes exist whose energies lie below the light line of the cladding

material (or light lines, if the waveguide is asymmetric). These modes are true stationary Bloch
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states and, ideally, they are not subject to propagation losses. Above the light line of the cladding

material, the spectrum becomes a continuum of states with resonances called quasi-guided modes.

Since these modes lie within the leaky modes of the waveguide, they exhibit intrinsic propagation

losses due to out-of-plane diffraction. Moreover, the planar waveguide can be mono-mode or multi-

mode in the frequency region of interest. If the waveguide is multi-mode, there will be Bloch waves

with a cut-off corresponding to the onset of a higher-order mode in the planar waveguide. All of

these concepts appear in the photonic band structure.

As already discussed in Sec. 1.1, there are three numerical methods that solve Maxwell’s equations

for two-dimensional photonic-crystal slabs: the plane-wave expansion method, with a super-cell in

the vertical direction that accounts for the waveguide [Johnson, S. G., et al. (1999)], the finite-

difference time-domain method [Ochiai, T., et al. A (2001)], and the scattering matrix method

[Whittaker, D. M., et al. (1999)]. Each one has its advantages and its flaws. In particular, the

plane-wave expansion method with the super-cell is limited to energies below the light line; the

finite-difference time-domain method is time consuming and less accurate than frequency-domain

methods; the scattering-matrix method does not directly outputs the band structure. In the next

section, a novel method is presented [Andreani, L. C. (2002)]; the photonic band structure is

calculated by expanding the magnetic field in the basis of guided modes of the planar waveguide,

where each layer is taken to have an average dielectric function. The approach goes beyond the

nearly-free approximation of Ochiai, T., et al. B (2001), since no perturbative assumption is

required, and it is valid also for strong modulation of the dielectric function.

1.4.1 Numerical Method

The basic idea underneath this method is the expansion of the magnetic field in terms of the

guided modes of an “effective” waveguide, in place of a super-cell with plane-waves. Each basis mode

is then folded in the two-dimensional Brillouin zone, where it is coupled by the inverse dielectric

tensor ηG,G′ , just like plane waves in a two-dimensional photonic crystal. The eigenstates falling

below the light line are identified as guided modes, whereas those above the light line represent the

guided resonances.

The importance of using guided modes instead of plane waves is readily explained. Below the light
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line, the spectrum is discrete, ωn(k), and the modes exhibit exponential decay in the cladding;

above it is continuum, ωρ(k), and the modes have an oscillatory profile in the cladding. If the

spectrum is discrete, an expansion with N plane waves yields N eigenstates with increasing energy:

ω1(k), ω2(k), . . . , ωN (k). Also, if the super-cell is large enough, the overlap among guided modes

of nearest super-cells is negligible, because the mode profile decays exponentially in the cladding.

When the spectrum becomes continuum, there are two issues with the super-cell method. First of

all, since the mode profile is not evanescent in the cladding, there will be interaction among modes

of neighboring super-cells, causing an error in the evaluation of the eigenfrequencies. Secondly, the

diagonalization of the hamiltonian will give only the states of the continuum that are just above the

light line. In fact, if ωLL(k) is the frequency of the light line for Bloch vector k, ∀ ε > 0, ∃ωρ(k) :

ωLL(k) < ωρ(k) < ωLL(k) + ε. Thus, given any number N of plane waves, all the eigenfrequencies

above the light line will lie in an infinitesimal around of the accumulation point ωLL(k). In other

words, the plane-wave expansion does not pick up the resonances of the continuum, but it yields

the first states, without exception, starting from the light line and within an infinitesimal interval

of ωLL(k). That is why the plane-wave expansion is valid only for modes below the light line, where

the spectrum is discrete, and not for the resonances.

As already mentioned, the numerical method proposed by Andreani, L. C. (2002) avoids the use

of a super-cell and expands the electromagnetic field in an orthonormal set of guided modes of an

effective waveguide. The great advantage is that the method is able to calculate the dispersion

relation of the resonances. Within this approach, both modes above and below the light line are

considered as truly guided, so that the spectrum is discrete, formally. This avoids the problem

encountered with the plane-wave expansion. Indeed, while plane waves form a complete basis set,

the expansion on guided modes is not such, because leaky modes are missing. Therefore, the two

“hamiltonian” differ: if H is the “hamiltonian” in the plane-wave expansion and ωn(k), ωρ(k) is the

spectrum (discrete and continuum), the “hamiltonian” in the guided-modes expansion will be H̃
with spectrum ω̃n(k) only discrete. Below the light line, the assumption is that ω̃n(k) ∼ ωn(k) with

good approximation. The eigenfrequencies above the light line simply represent the frequencies

of the resonances, ω̃n(k), with zero line-width. The method is not exact, in principle, and its

validity relies on the contribution of leaky modes to the eigenfrequencies. The assumption is that
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the frequency shift due to coupling with leaky modes of the effective waveguide is small, if not

negligible, for both guided and quasi-guided modes. As to the spectrum below the light line, very

good agreement has been found in comparison with the super-cell method. Concerning the modes

above the light line, the method has been tested with results in the literature [Ochiai, T., et al.

A (2001)] and, indirectly, with the scattering-matrix method [Andreani, L. C. (2002)]. Also for

this case the agreement is very good.

The implementation of this method is not much different from the plane-wave expansion method.

The basis set is chosen to consist of the guided modes of an effective planar waveguide, where each

layer j has the homogenous dielectric function given by the spatial average of εj(x) within the

unit cell; i.e. the diagonal elements of the dielectric matrix εj,G,G, see Eq. (1.26). Therefore, in

Eq. (1.20), the plane waves are replaced by the guided modes, and the magnetic field is

Hk(r) =
∑

G∈G

∑
α

cα(k + G)f̂α(z)eı(k+G)·x , (1.29)

where f̂α(z)eı(k+G)·x represents a guided mode with wave-vector k + G; α is a discrete index that

labels the guided mode, k is the Bloch vector and G are reciprocal vectors of the two-dimensional

lattice. Likewise for the plane-wave expansion method, the G vectors are limited by a cut-off K

and the master equation is transformed into a linear eigenvalue problem

∑

G′,α′
Hα,α′

G,G′cα′(k + G′) =
ω2

c2
cα(k + G) , (1.30)

where the “hamiltonian” matrix is given by

Hα,α′
G,G′ =

∫
1

ε(r)

(
∇× fα(z)e−ı(k+G)·x

)(
∇× fα′(z)eı(k+G′)·x

)
dr . (1.31)

The matrix elements Hα,α′
G,G′ of Eq. (1.31) can be calculated by noting that the dx integral in each

layer j yields the matrix Fourier transform [[ε−1
j ]] of the inverse dielectric function. This is the

same quantity that appears in the two-dimensional case and is computed using the inverse method

[[ε−1
j ]] ⇒ [[ηj ]].

Besides a wave-vector cut-off K, it is also convenient to specify a maximum number of guided

modes of the effective waveguide. 109 plane waves are found to give stable photonic bands up to

ωa/2πc ∼ 0.7 in the whole range of hole radii from zero to the close-packing condition r = 0.5a.
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Figure 1.10 Left (right) panel: empty-lattice (photonic) bands for a
self-standing dielectric membrane, patterned with a 1D lattice
with air filling ratio f = 30%. The width of the waveguide
is d/a = 0.5 and the core dielectric function is ε = 12. The
dashed lines delimit the guided-mode region (white area) and
refer to the dispersion of light in air and in the effective core
material (ε = 8.7). Light gray is for the leaky mode region,
dark gray is where no solutions can exist.

For symmetric waveguides, keeping four guided modes in each parity sector gives also very good

convergence, except when the waveguide is so thick that several higher-order modes are required.

1.4.2 The Photonic Band Structure

The photonic band structure of photonic-crystal slabs is characterized by the light-line problem,

which discriminates between guided modes and quasi-guided modes. This is one of the main

novelties with respect to conventional photonic crystals. Moreover, it has been mentioned that

there can exist Bloch waves with a cut-off, which depends on the waveguide geometry. To get

more insight on these concepts and have a better understanding of the photonic band structure,

it is useful to study a simple case, namely a self-standing dielectric membrane in air, completely

etched with a one-dimensional lattice like a Bragg reflector. The formation of the band structure

is explained starting from the guided modes of the effective waveguide, which corresponds to the

empty-lattice picture seen for two-dimensional photonic crystals. The core layer is chosen to have
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ε = 12, the cladding ε = 1. The filling factor is f = 30% and the waveguide thickness is d = 0.5a.

The effective waveguide, which defines the basis states, is an homogenous self-standing membrane

with dielectric constant ε = 8.7, given by Eq. (1.26).

The left panel of Fig. 1.10 displays the dispersion relation of the H-like modes for the effective

waveguide, folded in the Brillouin zone. The light lines are drawn with dashed lines. The dark

gray region is where no solutions can exist. The white region, between the light lines, contains the

guided modes. The light gray area corresponds to leaky modes. These guided modes represent the

empty-lattice states that are used as basis set in the numerical method. Actually, in order to form

a complete basis set, the expansion should include all the waveguide modes that are found for a

given Bloch vector k. In this case, the number of states would be infinite, because of the leaky

modes continuum, and the expansion would be numerically untractable.

This picture is similar to Fig. 1.2a, where plane waves have been replaced by guided modes, to

account for the vertical confinement. There are two main differences with respect to Fig. 1.2a:

there exist modes characterized by a cut-off energy that do not reach the long-wavelength limit,

and the presence of a continuum spectrum (leaky modes). The long-wavelength limit corresponds

to the fundamental waveguide mode, while the states with cut-off are higher-order modes.

The form of the dielectric matrix [[ε]] is the origin of propagation losses in photonic crystal slabs.

When a guided mode is folded, it crosses the air light line and enters the leaky mode region.

However, the mode remains truly guided, because the coupling with leaky modes is null, since the

dielectric tensor of the effective waveguide is diagonal. Indeed, the photonic band picture of the

effective waveguide is equivalent to the conventional unfolded dispersion relation, where guided

modes never cross the light line. When the effective waveguide is replaced by the photonic crystal

slab, the numerical method outputs a discrete spectrum above and below the light line, which is

shown in the right panel of Fig. 1.10. Below the light line, the photonic band structure is made of

guided Bloch states, which may form a photonic band gap likewise in a one dimensional photonic

crystal, see Fig. 1.2b. Once the Bloch mode has crossed the light line, even if it is calculated as a

state with zero line-width, in fact, it becomes a resonance, due to the non-zero off-diagonal elements

of the dielectric matrix [[ε]], which couple the Bloch mode to the external field. Therefore, these

states are subject to intrinsic propagation losses. The physical process that causes losses, is thus
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diffraction, since states with different G vectors are coupled by the off-diagonal elements of [[ε]],

and the origin of diffraction is the periodicity of the dielectric function.

The spectrum is thus a continuum of states and the photonic band picture seems to break down.

However, assuming that above the light line, the dispersion relation of photonic crystal slabs is not

a mere continuum of states, but it is organized in resonances, with central frequency and width well

defined, the photonic band picture is still valid. In summary, the photonic bands lying below the

light line represent the dispersion of guided modes, while those above the light line represent the

dispersion of resonances. The numerical method does not provide the width of the resonances, so

that, in principle, it is not known if the above statement holds. This issue will be addressed in the

next two chapters, to show that the photonic band picture indeed is valid also for modes above the

light line, provided that the structure is properly designed [Krauss T. F., et al. (1996)].

Also the concept of photonic band gap requires some clarifications. Looking at band structure in

the right panel of Fig. 1.10, notice that the band gaps are not characterized by a null density of

states. In fact, in Eq. (1.17) the sum is performed over the whole Brillouin zone, which includes

the leaky mode region. Considering that above the light line the states are organized in resonances,

it is correct to assume that far from the resonances the density of states is almost zero, or at least

very small. In this sense, the concept of photonic band gap is reformulated as follows: the spectral

region [ω1, ω2] for which ∀ω ∈ [ω1, ω2], @ (k, n) : ω = ω̃n(k), where ω̃n(k) is either a guided mode or

a resonance, is called the photonic band gap. Therefore, photonic-crystal slabs represent a trade-off

also in the sense that the photonic band gap does not exactly imply a null density of states.

Another important feature of the band structure of photonic crystal slabs is that the band gap

can be closed also by the onset of a higher order mode, as shown in Fig. 1.10 for the band gap

at ωa/2πc ∼ 0.4. For this reason, it is favorable to work in the frequency region where only the

fundamental mode can exist.

As a final remark, it is worth to mention that the choice of the effective waveguide is by no

means unique. The effective waveguide determines the guided modes used as basis set. Since the set

is not complete, changing the effective waveguide is not irrelevant. However, calculations performed

taking different values for the average dielectric functions gave very similar results, apart the cut-off

energies of the higher order modes, which strongly depend on the effective waveguide. That is why
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Figure 1.11 Photonic bands for the air-bridge structure of Fig. 1.9d, with
hole radius r = 0.24a. (a) Waveguide thickness d = 0.3a; (b)
waveguide thickness d = 0.6a; (c) ideal 2D case. Solid (dashed)
lines represent modes that are even (odd) with respect to the
xy mirror plane. The dotted lines in (a) and (b) refer to the
light lines in air and in the effective waveguide material.

the cut-off energies have to be treated with particular care.

1.4.3 Vertical Confinement Effects

Given a numerical method to calculated the band structure and explained what is conceptually

different or new with respect to conventional photonic crystals, it is time to return to the structures

of Fig. 1.9 and study two representative systems: the strong confinement waveguide (air bridge,

Fig. 1.9d) and the weak confinement waveguide (AlGaAs/GaAs/AlGaAs, Fig. 1.9e). The pattern

is a triangular lattice of air holes, Fig. 1.9a. The aim is to see the dependence of the photonic band

structure on the waveguide thickness d and on the hole radius r for both weak and strong con-

finement cases. The band structure is calculated along the symmetry lines of the two-dimensional

Brillouin zone, Fig. 1.9c. Since these systems are symmetric, the bands are classified in H-like

modes and E-like modes.
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Bands

Fig. 1.11 shows the photonic band structure of the air bridge for a hole radius r = 0.24a and

waveguide thickness d = 0.3a, 0.6a, compared with the ideal two-dimensional case. The bands of

the two-dimensional system, Fig. 1.11c, exhibit a photonic band gap between the first and second

band for even modes (H -modes). The bands of the photonic crystal slab fall partly in to the guided

mode region, where they agree with those calculated by Johnson, S. G., et al. (1999), and partly

in the leaky mode region, where they must be viewed as resonances. For thickness d = 0.3a, see

Fig. 1.11a, the lowest bands are qualitatively similar to their two-dimensional counterpart, but

they are also strongly blue-shifted due to field confinement in the z direction. The gap in the

even modes (H-like modes) opens between ωa/2πc ∼ 0.29 − 0.34, while it is located between 0.2

and 0.23 in the two-dimensional case. The confinement effect is stronger for odd modes. This

feature is interpreted as follows: in the long-wavelength limit, the waveguide behaves as a uniaxial

medium, with ε‖ ≡ εzz, given by Eq. (1.26) and being larger than ε⊥ ≡ εxx = εyy, approximated

by Eq. (1.27). In the two-dimensional case, odd modes have the electric field along z and feel the

largest dielectric constant ε‖: hence they are better confined in the waveguide and have a larger

blue-shift compared to even modes.

The six photonic modes at the Γ point in each polarization can be interpreted as the fundamental

waveguide mode at the lowest non-zero reciprocal lattice vectors, folded in the Brillouin zone and

split by the dielectric matrix. Notice that the in the photonic crystal slab with d = 0.3a, the

modes up to ωa/2πc ' 0.57 can be put in one-to-one correspondence with the bands of the two-

dimensional case, indicating that the waveguide is mono-mode. A second-order waveguide mode

appears above ωa/2πc ' 0.57. Analogous considerations hold for the case of waveguide thickness

d = 0.6a, in Fig. 1.11b, where the field confinement is less pronounced. Moreover, a second-order

waveguide mode starts already at ωa/2πc ' 0.3 and the bands at higher frequencies become more

complex.

The example allows to discuss the trend with waveguide thickness with fixed hole radius r = 0.24a.

For a small value of d/a, the waveguide is mono-mode in a wide frequency range and the photonic

bands can be interpreted as two-dimensional bands blue-shifted by the field confinement. The
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Figure 1.12 Photonic bands for the weak-confinement structure of
Fig. 1.9e, with hole radius r = 0.24a. (a) Waveguide thick-
ness d = 0.3a; (b) d = 0.6a; (c) d = 1.0a. Solid (dashed) lines
represent modes that are even (odd) with respect to the xy

mirror plane. The dotted lines refer to the light lines in the
effective core and cladding materials.

confinement is stronger for odd modes. On increasing the ratio d/a, the blue-shift is reduced and a

second-order waveguide mode occurs with decreasing cut-off frequency. For d > 0.6a, the second-

order mode falls into the gap of even modes. When defects are present in the band gap, the presence

of the second-order mode will contribute to losses. Concerning low-loss wave propagation , it is

better to have structures that are mono-mode in the frequency range of interest. For the air bridge

system, small values of d/a are more favorable.

Fig. 1.12 displays the photonic bands for the weak-confinement structure of Fig. 1.9e for three

values of waveguide thickness. Due to the small dielectric contrast between core and cladding, there

are no truly guide modes and all photonic modes lie in the radiative region. The dispersion of quasi-

guided modes is very similar to the two-dimensional case of Fig. 1.11c and the blue-shift is much

less than for the air bridge. However, it is noticeable that the gap in the even modes is increased

compared to the two-dimensional case. The three patterned waveguides are mono-mode for the

shown frequency range, except for d = a, where a second-order mode occurs for ωa/2πc ' 0.65.

Like for the strong confinement case, the results of Fig. 1.12 suggest that, in order to maximize the
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Figure 1.13 Gap maps for the air bridge structure of Fig. 1.9d. (a) Waveg-
uide thickness d = 0.3a; (b) waveguide thickness d = 0.6a;
(c) ideal 2D case. Solid (dashed) lines represent the edges of
photonic bands that are even (odd) with respect to the xy

mirror plane. The dotted line in (b) refers to the cut-off of the
second-order waveguide mode.

even gap, it is more convenient to use small values of waveguide thickness.

Gap Maps

It is also interesting to see the trends of the band gaps with the hole radius. Fig. 1.13 displays

the gap maps as a function of hole radius for the air bridge structure of Fig. 1.9d with waveguide

thickness d = 0.3a, 0.6a and in the two-dimensional case. The purpose of Fig. 1.13c, which is equal

to Fig. 1.6, is to set a reference for the gap maps in a photonic crystal slab. The gap map of the

two-dimensional case has already been discussed in Sec. 1.3.1. For the photonic crystal waveguide,

Fig. 1.13a,b, there is no gap in the odd modes (dashed lines) for any hole radius and, therefore, no

complete band gap. The band gap for even modes (solid lines) occurs at higher frequencies than

in two-dimensions, because of the vertical confinement.

It has to be remarked that the upper edge of the gap lies in the radiative region for a hole radius

larger than about 0.4a so that the even gap is formed partly in the guided mode region and partly in

the leaky mode region. The band gaps obtained here are larger than those calculated by Johnson,
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Figure 1.14 Gap maps for the weak-confinement structure of Fig. 1.9e. (a)
Waveguide thickness d = 0.3a; (b) d = 0.6a; (c) d = 1.0a.
Solid (dashed) lines represent the edges of photonic bands that
are even (odd) with respect to the xy mirror plane.

S. G., et al. (1999), where only the guided mode region was considered. Moreover, Johnson, S. G.,

et al. (1999) concluded that the optimal waveguide thickness for a gap in the even modes is around

d = 0.6a and that the band gap would decrease for smaller thicknesses. By considering both guided

and quasi-guided modes, we find instead that the even gap of the triangular lattice of holes remains

large even for waveguide thicknesses d = 0.3a and below.

The dotted line of Fig. 1.13b represents the cut-off frequency of a second-order waveguide mode

(see also Fig. 1.11b). Strictly speaking, the even gap exists only between the lower gap edge and

the second-order cut-off. For d = a (not shown), the second-order cut-off falls below the lower

gap edge, closing the even gap. However, since this numerical method does not provide accurate

cut-offs, the above statement might be wrong. Again, to avoid complications related to multi-mode

waveguides, it is more convenient to choose values of d/a smaller than 0.6.

Fig. 1.14 shows the gap maps for the weak-confinement waveguide of Fig. 1.9e, with waveguide

thickness d = 0.3a, 0.6a, a. They are rather similar to the two-dimensional case, because the

confinement effect is much less important than for the air bridge. It has to be pointed out that

the weak-confinement waveguide has no truly guided modes in the considered range of waveguide

thicknesses: all modes are resonances and the photonic band gap lies entirely in the radiative
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region. Notice that, on decreasing the waveguide thickness, the gap for odd modes opens at smaller

values of the hole radius; the same happens for the even gap. Contrary to the strong-confinement

waveguide, a full band gap common to both polarizations still exists and it occurs even for hole

radii of the order of 0.3a, if waveguide widths d ∼ 0.3a are used.

1.4.4 Symmetry Properties

As regards the symmetry properties of two-dimensional photonic crystal slabs, there is no much

more to say with respect to two-dimensional photonic crystals. In Sec. 1.3.2, it has been shown

that the point group of a triangular lattice of air holes is D6h, seen as direct product of C6v and Cs.

The small point groups at the main symmetry points are D2h at M and D3h at K. Likewise for the

point group, it is convenient to write the small point groups as a direct product: D2h = D2v ⊗ Cs

and D3h = D3v ⊗ Cs. Cs contains the identity and the reflection with respect to the x − y plane,

σxy. For two-dimensional photonic crystal slabs, with triangular lattice of air holes, the symmetry

analysis can be divided into two cases, according to the symmetry with respect to the mid-plane

of the core layer. For symmetric waveguides (air bridge, AlGaAs/GaAs/AlGaAs, etc.) the point

group and the small point groups are those of two-dimensional photonic crystals (for in-plane prop-

agation). For asymmetric waveguides (silicon-on-insulator, etc.), σxy is not a symmetry operation

anymore and the point group is only C6v; correspondingly, the small point groups are C2v and C3v.

Given the small point groups, the classification of photon states proceeds as described in Sec. 1.3.2

for two-dimensional photonic crystals. However, since above the light line the spectrum is contin-

uum, one would have an infinite number of states to analyze, which is meaningless. The modes of

interest are only the central frequencies of the resonances. With the present numerical method, the

symmetry properties of resonances are studied by looking at the corresponding eigenvectors, as if

the spectrum were discrete.

The photonic bands of two-dimensional photonic crystal slabs have been calculated by means

of a numerical method conceptually analogous to the usual plane-wave expansion. The concept of

photonic band structure and of photonic band gap have been extended, in order to account for the

existence of quasi-guided modes in the radiative region. For strong-confinement waveguides (air
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bridge), the photonic modes exhibit a large blue-shifted with respect to the two-dimensional case.

The gap maps of the air bridge display only a gap for even modes. The even gap remains large

even for small waveguide thickness, while it is closed by a second-order waveguide mode when the

thickness reaches d = 0.6a. In the weak confinement waveguide (GaAs/AlGaAs system), the bands

are similar to the two-dimensional case. However, the single gaps and the complete band gap open

for smaller values of the hole radius. Another difference between strong and weak confinement

waveguides regards the nature of photonic modes. While strong confinement waveguides support

both guided and quasi-guided modes, weak confinement waveguides have practically only quasi-

guided modes. These modes are subject to propagation losses, because of the coupling to the

external field. Understanding and quantifying out-of-plane losses is very important, since they

may preclude the use of photonic crystal slabs towards integrated photonic crystals circuits. One

would like to know which is the optimal waveguide design that accounts for minimal out-of-plane

losses, ease of fabrication with lithographic methods and appropriate band gap properties. An air

bridge system allows to operate with truly guided modes; on the other hand, it is more difficult to

fabricate. Two-dimensional photonic crystals embedded in weak confinement waveguides possess a

band structure that is more similar to the two-dimensional case and they can be obtained with top-

down processes much easily than suspended membranes. These features make weak confinement

systems more promising than the strong confinement counterpart, provided they exhibit “small”

propagation losses [Benisty, H., et al. (2000)].

The next chapter is focussed on the study of radiative modes and on the optical properties

of two-dimensional photonic crystals. One of the objectives is to have a deep understanding of

out-of-plane losses, with emphasis on weak confinement systems. Following the trend of losses as a

function of the structure parameters, may help in finding the optimal design for a two-dimensional

photonic crystal slab. This will be accomplished by taking into account also the finite etch depth

of the photonic crystal pattern, which is the usual situation for realistic systems.

Before concluding the chapter, a last section is dedicated to the super-cell method and to the

dispersion relation of linear defects in photonic crystals. These results will be used in Chapter. 3

to analyze wave propagation in two-dimensional photonic crystals.
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1.5 Linear Defects in Two-Dimensional Photonic Crystals

The photonic band gap is so much attracting because of the capability to control wave prop-

agation, besides light emission [Joannopoulos, J. D., et al. (1997)]. Such functionality can be

achieved by designing defects, which create energy levels within the photonic band gap. Consid-

ering the plane of periodicity of two-dimensional photonic crystals, a point defect corresponds to

a resonant cavity, while a linear defect corresponds to a waveguide. Resonant cavities and waveg-

uides are among the building blocks of photonic integrated circuits. Since a point defect breaks

the periodicity in two dimensions, it is characterized by a dispersion-less spectrum (if only in-plane

wave-vectors are considered). On the other hand, a linear defect preserves the periodicity in one

dimension, yielding a one dimensional Brillouin zone and a Bloch vector k. Therefore, these defect

states will obey to a dispersion relation ω = ωm(k), where m is the order of the guided mode, in

analogy to a conventional waveguide with periodic corrugated walls.

Among the all possible linear defects [Joannopoulos, J. D., et al. (1995); Johnson, S. G., et

al. (2000)], the choice falls on those created by removing N adjacent rows of holes in a photonic

crystal made of a triangular lattice of air holes in a dielectric material. The motivation is that

these systems are the most promising for application in photonic integrated circuits. The so-called

WN waveguide, where N is the number of removed rows, is usually created along the Γ−K direc-

tion, rather than the Γ −M , because the waveguide walls are smoother. The guides with odd N

(W1,W3,. . . ) have symmetric boundaries, while those with even N (W2,W4,. . . ) have boundaries

shifted by a/2 with respect to each other [Benisty, H. (1996)]. It is convenient to work with odd

N , because the waveguide is symmetric with respect to its axis.

Fig. 1.15 shows a W1 waveguide, which is created by removing one row of air holes along the

Γ−K direction of the triangular lattice. By definition, a WN waveguide is obtained by removing

N rows of adjacent holes along Γ−K. For a W1 waveguide, the width w corresponds to a
√

3, which

is generalized to w = a
√

3(N + 1)/2 for WN waveguides. The presence of the waveguide breaks

the periodicity along Γ−M . Nevertheless, the system remains periodic along Γ−K, with lattice

constant a, so that the Bloch theorem applies. An efficient numerical technique for calculating the

dispersion relation of the guided modes is the super-cell method [Benisty, H. (1996)].
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Figure 1.15 Left: a photonic crystal waveguide along the Γ−K direction
of a triangular lattice of air holes in a dielectric material. w

defines the width of the waveguide, a is the lattice constant.
Right: an example of super-cell for the calculation of the pho-
ton dispersion for this system.

1.5.1 The Super-Cell Method

Consider the unit cell displayed in the right panel of Fig. 1.15, which contains the waveguide

defect. The super-cell method consists of assuming a periodic array of waveguides, spaced by bulk

photonic crystal, whose unit cell corresponds to the one just mentioned. The spacing is determined

by the width of the super cell. A guided mode is characterized by an evanescent field in the direction

perpendicular to the Bloch vector. For this reason, if the super-cell is sufficiently large, the guided

modes of adjacent unit cells will not overlap (no interaction) and the dispersion relation will be

like that one of a single waveguide. The array of waveguides is characterized by two primitive

vectors a1,a2. Even if the Brillouin zone is two-dimensional, only the Bloch vector along the

waveguide axis represents the true guided-mode wave-vector. Given the unit cell, the reciprocal

primitive vectors and the Bloch vector, the dispersion relation is calculated by the usual plane-wave

expansion method.

While the primitive vectors are easily found by looking at the super cell: a1 = a(1, 0) and a2 =

a
√

3(0, (N + 1)/2 + K), where N is for WN and 2K + 1 is the number of photonic-crystal rows

between two waveguide channels, the dielectric matrix [[ε]] of the unit cell is more difficult to

calculate. Looking again at Fig. 1.15, notice that the dielectric function inside the super cell can
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be obtained from the dielectric function of a single air hole, displaced by well defined vectors

ε(x) = εdiel + (εair − εdiel)
∑
v

θ (|x− v| − r) , x ∈ unit cell , (1.32)

where r is the hole radius, x = (x, y), and v are the displacement vectors. θ(x) is the Heaviside

function. Writing the dielectric function in the form of Eq. (1.32) is very convenient for computing

the Fourier integral, see Eq. (1.23). Indeed, the Fourier transform of the dielectric function can be

expressed as the bulk Fourier transform multiplied by a structure factor,

εG,G′ =





S(G−G′)F (εair, εdiel, r,G), if G 6= G′;

f ′εair + (1− f ′)εdiel, if G = G′;
(1.33)

with f ′ as the super-cell filling factor and G,G′ are the reciprocal vectors of the super-cell lattice.

S(G) is the structure factor, while F (εair, εdiel, r,G) is the atomic factor, corresponding to the

dielectric-function Fourier transform of the bulk photonic crystal:

S(G) =
Ac

A

∑
v

eıG·v , F (εair, εdiel, r,G) = (εair − εdiel)
2πr

AcG
J1(Gr) , (1.34)

where A is the area of the super cell, while Ac is the area of the bulk crystal unit cell.

Once that the dielectric matrix has been calculated, Eqs. (1.24a) and (1.24b) can be used to find

the dispersion relation of guided H -modes and guided E -modes, respectively. Since the waveguide

is symmetric with respect to its axis, the guided modes can be further classified as even or odd

with respect to a reflection plane σxz, where x is the waveguide axis and z is the vertical direction.

If not otherwise stated, the plane-wave expansion is performed with ∼ 500 waves and the width of

the super-cell is such that 13 photonic-crystal rows separate the waveguides (K = 6).

1.5.2 The Dispersion Relation

Fig. 1.16 shows the dispersion relation of the W1 channel waveguide of Fig. 1.15, for f = 60%

and εdiel = 11.56. The figure displays only guided H -modes that are spatially even with respect to

σxz
9. The gray regions correspond to modes of the bulk photonic crystal.

Since the waveguide is symmetric, the fundamental guided mode does not have a cut-off. Notice
9Notice the nomenclature: the modes are even if one looks at the field pattern, but they are globally odd for the

symmetry operation σxz: σxz = −1. Thus the adjective “spatially” to specify when one refers to the symmetry of
the field profile only.
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Figure 1.16 Dispersion relation for the photonic crystal waveguide of
Fig. 1.15 with w =

√
3a, f = 60%, and εdiel = 11.56. The

gray area is the projected band structure of the bulk photonic
crystal. The solid lines correspond to guided H -modes that
are spatially even with respect to the waveguide axis.

also that the fundamental guided mode lies below the bulk modes, because the field is confined where

the dielectric function is higher than the effective dielectric constant of the bulk crystal. After that

the fundamental mode is folded at the edge of the Brillouin zone (ωa/2πc = a/λ ' 0.17), it crosses

and anti-crosses with the bulk states until it reaches the photonic band gap. The fundamental mode

is folded once again at a/λ ' 0.32 and it proceeds towards higher frequencies, where it anti-crosses

with the higher order mode at a/λ ' 0.37. While the fundamental guided mode has dispersion

similar to modes of conventional dielectric waveguides, the higher order mode resembles those of

narrow metallic waveguides. Indeed, the fundamental guided mode originates from conventional

index confinement, due to the dielectric path embedded in the photonic crystal. On the contrary, the

higher order mode can exist only thanks to the photonic band gap, which acts similarly to perfect

metallic mirror. In general, the guided modes of WN linear defects are of two types: dielectric

modes and photonic-band-gap modes. This is a peculiarity of photonic crystal waveguides created
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by adding dielectric material to the bulk crystal [Joannopoulos, J. D., et al. (1995); Johnson,

S. G., et al. (2000)]. The coexistence of dielectric and photonic-bang-gap guided modes favors

the occurrence of multi-mode frequency regions, for instance in the proximity of the anti-crossing

between the fundamental and the higher order mode, as shown in Fig. 1.16. Such feature, and its

implications, will be extensively discussed in Chapter 3.

The Mini-Stop Band

Another interesting aspect of WN waveguides is the concept of mini-stop band. In the dispersion

relation of Fig. 1.16, the fundamental guided mode exhibits gaps at the edges of the Brillouin zone

and anti-crossing with the higher order mode. The phenomenon can be easily explained by noting

that the walls of the dielectric channel are corrugated by rows of air holes. Such corrugation acts

like a one-dimensional periodic potential on the guided modes. Therefore, when the guided mode

reaches the edge of the Brillouin zone, the potential opens a mini-gap in the dispersion relation,

through the same mechanism described for a one-dimensional photonic crystal in Sec. 1.2.3 [Mekis,

A., et al. (1998)]. The same happens also for two guided modes of different order, when they

become degenerate and have the same symmetry: the periodic potential couples the modes and

causes anti-crossing in the dispersion relation [Agio, M., et al. (2001)]. Both mini-gap and anti-

crossing of guided modes are called mini-stop bands.
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CHAPTER 2. OPTICAL PROPERTIES

Measuring the photonic band structure represents one of the major efforts in the study of

photonic band gap materials and, since the discovery of photonic crystals, various methods have

been proposed [Yablonovitch, E., et al. (1989); Robertson, W. M., et al. A (1993); Labilloy, D.,

et al. A (1997); Astratov, V. N., et al. A (1999)]. Recently, Astratov, V. N., et al. A (1999)

have reported on a very efficient technique for measuring the quasi-guided modes of photonic-

crystal slabs: the so-called variable-angle reflectance. This chapter will discuss the determination

of photonic bands for representative systems, by means of the above method. Many of the results

that are presented have been obtained within a collaboration between experimentalists and theorists

at the Department of Physics “A. Volta”, Università degli Studi di Pavia, Italy. For a more

comprehensive insight, experimental data will be also shown and compared to theory. In particular,

reflectance, transmittance and diffraction are calculated ab-initio with the scattering matrix method

[Whittaker, D. M., et al. (1999)], so that a direct comparison with the measured spectra is possible.

Since probing the photonic band structure implies that an incident wave couples to the modes of

the system, i.e. an optical response to an external excitation, a correct interpretation of variable-

angle reflectance spectra has to account for the optical properties of photonic crystals. Indeed, in

analogy to the optical properties of solids, selection rules are found to make quasi-guided modes

visible or invisible to an external probe. For the above reasons, the measurement of photonic bands

is accomplished with a study of the optical properties of photonic crystals, which is based on the

group-theory analysis performed in the previous chapter, in Sec. 1.3.2.

Lastly, besides determining the frequency of quasi-guided modes, one would like to quantify their

width, which is related to propagation losses. Such information is very important for assessing

the guiding properties of such modes. In fact, that would really complete the characterization of

a photonic crystal, i.e. measuring both real and imaginary part of the spectrum. Since variable-
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angle reflectance relies on the coupling of the external radiation to quasi-guided modes, the method

may also attempt to investigate propagation losses and give qualitative trends as a function of the

geometry of the patterned waveguide.

The first section is devoted to a brief historical overview of the principal works that brought to

the determination of photonic bands, from the microwave regime up to the near-infrared domain,

in micron-size photonic crystals. The review points to the optical properties and, in particular,

to the assessment of out-of-plane losses of quasi-guided modes in photonic-crystal slabs, which

has already been reviewed in Sec. 1.1. Such discussion serves as an helpful background for a

better understanding of the results presented in the following sections. Section 2.2 introduces the

variable-angle reflectance technique as a method for measuring the photonic band structure and

for probing the optical properties of photonic crystals. The above procedure is implemented by

means of the scattering matrix method, which is the theoretical counterpart of a variable-angle

reflectance experiment. Section 2.3 is dedicated to the study of two-dimensional photonic crystals.

The photonic band structure of macro-porous silicon photonic crystals is extracted from variable-

angle reflectance spectra. Furthermore, it is shown that the optical properties obey to selection rules

for coupling the external field to quasi-guided modes; such rules, which stem from the symmetry

properties of the system, can be also inferred from the analysis of reflectance spectra. After dealing

with deep two-dimensional photonic crystals, the same study is applied to photonic-crystal slabs.

Section 2.4 reports on the determination of the photonic band structure for the air-bridge system

and for GaAs/AlGaAs patterned waveguides. The interpretation of reflectance spectra follows the

same selection rules discussed in the previous section. A comparison between two GaAs-based

samples with different air fraction shows that the width of the resonances, which is proportional

to out-of-plane losses, increases with the air fraction. Indeed, a careful analysis of reflectance is

also adequate to give insight on the issue of propagation losses in photonic-crystal slabs. To this

purpose, Section 2.5 contains a systematic study of the resonant features in reflectance, as a function

of various structure parameters, like waveguide thickness, hole radius and etch depth. By looking

at the width of a sample resonance, various trends for out-plane losses are presented. Though being

far from a direct determination of propagation losses, the study gives important hints for achieving

an optimal structure design.
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2.1 History

The experimental investigation of photonic bands followed soon the theoretical proposals of

Yablonovitch, E. (1987) and John, S. (1987) [Yablonovitch, E., et al. (1989); Robertson, W. M., et

al. A (1993); Gourley, P. L., et al. (1994)]. Thanks to the scaling properties of Maxwell’s equations

the dispersion properties of photonic crystals could be easily tackled by working with “macroscopic”

systems, like two-dimensional photonic crystals made of an ordered arrangement of centimeter-size

alumina rods. While the measurement of the photonic band gap (frequency range and power

attenuation) was not particularly difficult in the microwave regime, a complete determination of

the photonic band structure was challenging because of the required knowledge of both frequency

and wave-vector of the Bloch states. To this purpose, Robertson, W. M., et al. A (1993) conducted

experiments on two-dimensional photonic crystals using a phase-sensitive setup: by sending a plane-

wave through the sample, the apparatus yields both amplitude and phase of the transmitted field.

These information can be then recast to build the photonic band structure. Much more demanding

is to transfer the same kind of experiments to the infrared and optical regimes. One could say

that the measurement of photonic bands in the infrared domain is not necessary if one exploits the

above mentioned scaling properties. Nevertheless, the characterization of micron-size samples was

of primarily importance for the advancement of the physics of photonic crystals. The difficulties

were double: lack of high quality samples and the need of refined spectroscopic techniques. Finally,

a quantitative measurement of transmission, reflection and diffraction in photonic crystals operating

at near-infrared wavelengths was reported by Labilloy, D., et al. A (1997), who took advantage of

high-quality GaAs-based samples [Krauss T. F., et al. (1996)] and devised a novel methodology for

probing the optical properties of waveguide-embedded two-dimensional photonic crystals [Labilloy,

D., et al. A (1997); Labilloy, D., et al. B (1997)]: the so-called internal light-source method.

Using the same technique, a couple of years later, Labilloy, D., et al. (1999) were able to the

determine the photonic band structure by extracting the Bloch wave-vector from finely resolved

transmission spectra: the fine interference pattern is due to the Bloch waves reflected at the cleaved

edges of the sample. Later on, similar experiments were performed on other semiconductor-based

two-dimensional photonic crystals, like silicon-on-insulator, GaN and InP heterostructures, and
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GaAs/Alox [Astratov, V. N., et al. A (1999); Lončar, M., et al. B (2000); Pacradouni, V., et

al. (2000); Chow, E., et al. (2000); Baba, T., et al. (2001); Kawai, N., et al. (2001); Lončar, M.,

et al. (2002); Ferrini, R., et al. (2002); Coquillat, D., et al. (2001); Galli, M., et al. B (2002);

Patrini, M., et al. A (2002)]. These works can be grouped into three main techniques: the

internal source method, the end-fire method and the variable-angle-reflectance method. The latter,

proposed by Astratov, V. N., et al. A (1999), is very attracting for its relative simplicity with

respect to the other methods and for being appropriate for a direct measurement of the dispersion

of quasi-guided modes. Furthermore, while the other setups might depend on the type of sample,

because of the issue of in-plane coupling the external field to the Bloch states or because of the

necessity of appropriate internal sources, the variable-angle-reflectance can be performed in general

on any semiconductor-based system without major difficulties, as it will be understood from the

following sections. However, its flaw derives from the fact that it is limited to quasi-guided modes.

Thus, all techniques have their importance.

These efforts, besides aiming to the assessment of the photonic band gap and/or the photonic

band structure, sought for a more complete characterization of photonic crystals, namely the mea-

surement of propagation losses. Indeed, this aspects is a fundamental indicator for the feasibility

of photonic-crystal integrated circuits. A brief historical overview on this subject has already been

provided in the previous chapter (Sec. 1.1). Further and updated reference can be found in the

feature issue IEEE J. Quantum Electronics, 38 (7).

2.2 The Variable-Angle Reflectance

The variable-angle reflectance (VAR) represents a powerful method for measuring the photonic

band structure of quasi-guided modes [Astratov, V. N., et al. A (1999)]. The technique is based on

the coupling of the external field to photonic modes, which yields a resonant feature in an otherwise

smooth reflectance spectrum. The process is similar to probing elementary excitations in solids, by

measuring the optical properties of the system [Bassani, F., et al. (1975)]. The VAR of patterned

dielectric slabs can be also obtained with ab-initio methods, so that the calculated spectra can

be compared to the experimental ones. The scattering matrix method, developed by Whittaker,
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D. M., et al. (1999), was indeed proposed for interpreting the VAR measurements by Astratov,

V. N., et al. A (1999). The availability of exact results is certainly helpful in understanding the

reflectance curves, in order to extract the photonic bands.

Since the width of the resonances seen in reflectance is related to the imaginary part of the mode

energy, the VAR can be also employed to assess the propagation losses of quasi-guided modes, as

discussed in Sec. 2.5. Such information is of primary importance for designing waveguide-embedded

photonic crystals, specially for what concerns low-index contrast waveguides, where most of the

modes lie above the light line. The same study can be performed on defect states, to infer the band

dispersion and the attenuation length of guided modes in channel photonic-crystal waveguides, like

the WN system introduced in Sec. 1.5. In this case, the VAR experiment has to be performed

on arrays of linear defects designed on a single sample. Lastly, VAR is also suitable for studying

the diffraction properties of photonic-crystals, which may contain important information on the

symmetry of the excited state.

After exposing the basic ideas of the VAR technique, the discussion moves to the introduction

of the scattering matrix method, which represents the numerical realization of a VAR experiment.

Then, a few examples of reflection, transmission and diffraction spectra are given, in order to provide

a more complete understanding of the processes involved in the surface excitation of quasi-guided

modes, although the rest of the work will be limited to reflectance studies.

2.2.1 Basic Ideas

The resonant anomalies seen in reflectance correspond to coupling to the external field by grating

effect. In fact, the in-plane momentum conservation law that forbids the guided mode from coupling

to external photons ceases to be valid as a result of the patterning: a mode with in-plane momentum

k can couple to external modes provided that k is conserved within a reciprocal lattice vector G.

In other words, a mode with Bloch vector k and frequency ω couples, in principle, to all radiative

modes with in-plane momentum k + G and frequency ω, provided that εω2−(k + G)2 > 0, where ε

is the dielectric constant of the external medium (air). The latter condition represents the so-called

light line problem, which discriminates between guided modes and quasi-guided modes. Out-of-

plane diffraction losses are thus a natural consequence of the photonic-crystal pattern (that is why
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they are also named intrinsic). The coupling strength is related to the off-diagonal components of

the dielectric tensor [[ε]].

Now, the reciprocal process is an external wave that couples to the quasi-guided mode. The

incident wave, with frequency ω and momentum (k, q), where k is the in-plane momentum and q is

the vertical wave-vector component along z, impinges the surface of the patterned waveguide. The

external wave excites the quasi-guided modes of the system before being reflected and transmitted.

The anomaly in reflectance (and transmittance) occurs when the incident wave is resonant to a

quasi-guided mode, namely, when energy and in-plane momentum match those of a quasi-guided

mode. Furthermore, the quasi-guided mode radiates also into diffraction channels whenever εω2 −
(k + G)2 > 0.

Figure 2.1 Description of the Variable-Angle Reflectance technique. Polar-
ized monochromatic light impinges the surface of a 2D photonic
crystal with an angle θ. The reflected beam contains informa-
tion on the photonic modes of the system. The azimuth is cho-
sen in order to sample the symmetry lines of the 2D Brillouin
zone (the example regards a square lattice).

Once understood the mechanism that causes the anomalies in reflectance, how to extract the

corresponding photonic band structure? Consider a plane wave of frequency ω that impinges the

surface of a photonic-crystal slab with an angle θ, with respect to the normal to the surface (z

axis), and with an angle φ with respect to a reference in-plane direction (x axis); usually, the x axis
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is oriented along a symmetry line of the Brillouin zone, see Fig. 2.1. The wave-vector is determined

by the kinematics of the process: k = (ω
√

ε/c) sin θ(x̂ cosφ + ŷ sinφ), for the in-plane wave-vector,

and q = (ω
√

ε/c) cos θ, for the vertical component. The in-plane momentum is thus related to the

frequency ω and to the incidence angles (θ, φ) of the external plane wave. By varying ω, θ and

φ, one samples the whole photonic band structure that lies above the light line: from the energy

position of the anomalies in reflectance and the knowledge of the incidence angles, one goes back to

the point of the Brillouin zone that corresponds to the in-plane wave-vector of the incident wave.

By reporting the collected data into the dispersion diagram (ω,k), the photonic band structure is

readily obtained. It is often convenient to fix the angle φ, so that the plane of incidence is aligned

to the desired crystal orientation: Γ − K or Γ −M for a triangular lattice, Γ − X or Γ −M for

a square lattice. This allows to exploit the polarization of the incident light to separately sample

the modes with opposite parity with respect to plane of incidence: transverse electric (TE) or

transverse magnetic (TM) polarization couples to odd or even quasi-guided modes, respectively.

Thereafter, the angle θ is varied from 0◦ to ∼ 60 − 80◦ in steps of 2.5◦ or 5◦ and, for each value

of θ, the frequency of the incident wave spans a certain range to map the desired portion of the

dispersion diagram.

Experiment

Fig. 2.2 displays a typical experimental setup for performing VAR on photonic-crystals. A

broadband incident beam is selected into TE or TM polarizations, by a calcite Glann-Taylor po-

larizer, before reaching an elliptical mirror, which allows to select the angle of incidence θ. The

beam is collimated and focussed onto the sample surface with a spread angle of ±1◦, where the

sample surface is perpendicular to the plane of incidence. The reflected beam is then filtered by

another polarizer to assure that the measured light has the desired initial polarization. The light

exiting the slit is detected by a liquid-nitrogen-cooled InSb photodiode and a silver mirror is used

as absolute reflectance reference. A Fourier transform spectrometer (Bruker IFS-66) yields the

reflectance spectrum at a spectral resolution of 1meV.

The experimental data that will be shown in the next sections have been obtained with the above

setup by Galli, M., et al. A (2002) at “Laboratorio di Spettroscopia Ottica”, Università degli
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Figure 2.2 Experimental realization of the Variable-Angle Reflectance
technique. The elliptical mirror allows to vary the angle of
incidence θ. Courtesy of Galli, M., Università degli Studi di
Pavia, Italy.

Studi di Pavia, Italy.

2.2.2 The Scattering Matrix Method

The scattering matrix method (SMM) has been developed by Whittaker, D. M., et al. (1999)

in order to interpret variable-angle-reflectance experiments, conducted by Astratov, V. N., et al.

A (1999) on GaAs-based two-dimensional photonic crystals. This numerical technique allows to

calculate reflection, transmission and diffraction for any layered structure having a one- or two-

dimensional pattern. The method is based on the idea of expanding the electromagnetic field in

each layer by standard two-dimensional plane-wave expansion and propagating the set of amplitudes

through the layers by means of the scattering matrix, instead of the usual transfer matrix. Indeed,

in patterned multilayers, for each wave with in-plane wave-vector k there exists an infinite set

of amplitudes corresponding to reciprocal lattice vectors G. Wave components with large in-

plane k + G vectors are strongly evanescent in the perpendicular z direction; transferring rapidly

evanescent amplitudes leads to numerical overflow. From a computational point of view, it is better

to work with the corresponding scattering matrix [Ko, D. Y. K., et al. (1988)], which relates the

amplitudes of the ingoing fields to those of the outgoing fields, with respect to a dielectric interface,

instead of linking the left-side fields to the right-side field, as the transfer matrix does.

Even though a detailed description of the SSM can be found in Phys. Rev. B, 60(4) 2610–2618,
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which is the original paper by Whittaker, D. M., et al. (1999), it is worth to recall the major

steps of the derivation, so to give more insight on its theoretical foundation and provide a more

complete framework on the interpretation of variable-angle-reflectance spectra. The outline of the

numerical scheme is as follows: the electromagnetic field is expanded on a plane-waves basis in

each layer; the band structure is solved in each layer yielding a set of states that propagate in

the vertical z direction as simple plane waves exp(ıqz); a general expression of the electromagnetic

field is obtained by superposition of backward and forward Bloch states; the scattering matrix is

constructed; finally, reflection, transmission and diffraction are calculated by assuming an incident

plane wave as initial condition.

Consider Maxwell’s equations in the form of Eqs. (1.3a) and (1.3b). Assuming harmonic time

dependence, see Eq. (1.4), and rescaling ω/c → ω and ωE → E, the curl equations become

∇×H(r) = −ıε(r)E(r) , ∇×E(r) = ıω2H(r) . (2.1)

Notice that, for harmonic fields, the divergence equation for the electric field is automatically

implied by Ampere’s law. The divergence equation for the magnetic field can be satisfied by using

basis states with zero divergence. The dielectric function ε(r) is written as εj(x), where j labels

the j-th layer and x = (x, y) represents the in-plane coordinates.

Focus on the j-th layer and expand the magnetic field on a zero-divergence plane-wave basis:

Hk,q(x, z) =
∑

G

(
cx(k + G, q)

[
x̂− 1

q
(kx + Gx)ẑ

]
+

+ cy(k + G, q)
[
ŷ − 1

q
(ky + Gy)ẑ

])
eı(k+G)·x+ıqz ,

(2.2)

where k is the in-plane Bloch vector, q is the wave-vector along the vertical direction, G is a

reciprocal vector and cx, cy are the expansion coefficients; x̂, ŷ, ẑ are the axes unit vectors. It is

apparent that ∇ ·Hk,q(x, z) = 0. Eq. (2.2) can be rewritten in a more compact form as

Hk,q(x, z) =
∑

G

h(k + G, q; z)eı(k+G)·x , (2.3)

with h(k + G, q; z) representing the quantities into the round brackets multiplied by the phase

exp(ıqz). By substituting Eq. (2.3) into the magnetic-field curl equation, one finds the correspond-
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ing Fourier coefficients for the electric field

e(k + G, q; z) =
1
q
eıqz

∑

G′
ηG,G′×

{[
(ky + G′

y)(kx + G′
x)cx(k + G′, q) +

(
q2 + (ky + G′

y)
2
)
cy(k + G′, q)

]
x̂ +

− [
(kx + G′

x)(ky + G′
y)cy(k + G′, q) +

(
q2 + (kx + G′

x)2
)
cx(k + G′, q)

]
ŷ+

+q
[
(ky + G′

y)cx(k + G′, q)− (kx + G′
x)cy(k + G′, q)

]
ẑ
}

,

(2.4)

where [[η]]G,G′ = ηG,G′ is the usual notation for the inverse matrix of the dielectric function in

Fourier space. The full expression for the electric field reads

Ek,q(x, z) =
∑

G

e(k + G, q; z)eı(k+G)·x . (2.5)

By substituting e(k + G, q; z) and h(k + G, q; z) into the second curl equation (2.1), one obtains

three identities, corresponding to each field component, x, y, z; however, one identity is linearly

dependent on the other two. It is convenient to work with the identities related to the in-plane

components. Using the matrix notation [[ki]]Gi,G′i = (ki + Gi)δGi,G′i and [[ci]]G = ci(k + G, q), with

i being either x either y, the identities are gathered in a single matrix equation







[[η]] 0

0 [[η]]





q2 +




[[kx]][[kx]] [[kx]][[ky]]

[[ky]][[kx]] [[ky]][[ky]]





+

+




[[ky]][[η]][[ky]] −[[ky]][[η]][[kx]]

−[[kx]][[η]][[ky]] [[kx]][[η]][[kx]]











[[cx]]

[[cy]]


 = ω2




[[cx]]

[[cy]]




(2.6)

The notation can be even more compact if the 2× 2 block matrices are written as [[E ]]−1, [[K]] and

[[K]], and the coefficients are grouped in the vector [[C]] = ([[cx]], [[cy]])T :

[
[[E ]]−1

(
q2 + [[K]]

)
+ [[K]]

]
[[C]] = ω2[[C]] . (2.7)

Now, ω and k are good “quantum numbers” and are given as initial condition. On the contrary,

q is not conserved in the process, because of the absence of any translational symmetry in the

vertical direction. Thus, the general solution must be a linear combination of states (2.3) or (2.5)

for different q. That is why, Eq. (2.7) must be recast as an eigenvalue problem for q, not for ω. To

this purpose, one simply multiplies the above expression by [[E ]], obtaining

[
[[E ]]

(
ω2 − [[K]]

)
+ [[K]]

]
[[C]] = q2[[C]] . (2.8)
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Eq. (2.8) is an asymmetric eigenvalue problem, which can be even complex, if ε(r) has an imaginary

part. The fact that the eigenvalue problem is not symmetric, implies that the corresponding

eigenvalues q2 can be complex even for real ε(r). A complex or negative q2 belongs to waves that

are evanescent in the vertical direction, the ones responsible for numerical overflow in the transfer

matrix method. A useful orthogonality property can be derived by recasting Eq. (2.8) into a not-

positive-definite generalized symmetric eigenvalue problem. It follows that eigenvectors [[C]]n and

[[C]]n′ , corresponding to eigenvalues qn and qn′ obey the condition

[[C]]Tn
(
ω2 − [[K]]

)
[[C]]n′ = δn,n′ , (2.9)

with n and n′ varying between 1 and 2N . This relationship will be useful to express the scattering

matrix in terms of the expansion coefficients. Eq. (2.8) can be numerically solved by truncating the

expansion to a wave-vector cut-off K : |G| < K and using standard routines for the diagonalization

of a general matrix, be real or complex depending on ε(r). If N is the number of reciprocal vectors

used in the expansion, the “hamiltonian” matrix has dimensions 2N × 2N . Notice that the eigen-

vectors have also to be computed, because they will be used in the construction of the scattering

matrix.

The computed eigenvectors must satisfy the orthogonality relationship (2.9). For degenerate eigen-

values, the corresponding eigenvectors can be orthogonalized using a generalized Gram-Schimdt

procedure. Otherwise, when the eigenvalues are not degenerate, the eigenvectors should be already

orthogonal, as they are computed by the routine. Since the diagonalization process is often a black

box, the orthogonality of non degenerate eigenvectors is practically left to the routine “goodness”.

Lapack 3.0 routines have been found to comply with this requirement. However, it is likely to hap-

pen that nearly-degenerate eigenvectors do not satisfy Eq. (2.9) and, very often, none are written as

exactly degenerate, unless the layer be unpatterned1.Therefore, it is up to the programmer to decide

whether two eigenvalues are degenerate or not, according to the following criterion: the eigenvalues

differing by a quantity below a cut-off will undergo the Gram-Schimdt procedure that imposes the

orthogonality relationship, if not already satisfied. In brief, there are two extremes: if the cut-off is

1If the layer is unpatterned, eigenvalues and eigenvectors are easily found by analytical derivation. This does not
hold any more if the layer is patterned. It could happen that degenerate states are computed with a tiny splitting,
because of numerical accuracy and truncation of the plane-wave expansion.
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chosen too small, there will be non degenerate eigenvectors that do not satisfy Eq. (2.9), without

the possibility of applying the Gram-Schmidt orthogonalization. On the other hand, if the cut-off

is too large, the Gram-Schmidt procedure could mix states that are not truly degenerate. Since the

scattering matrix is built using the eigenvectors, the above errors will propagate to the scattering

matrix, with eventual numerical failure. Evidently, even the SMM has its weakness somewhere.

Nevertheless, after accurate tuning of the cut-off, the method is found to be stable and accurate.

After such important clarification, there are other major steps before completing the derivation of

the SMM.

As already mentioned, the fields can be expressed as a combination of backward and forward

waves, with vertical wave-vector qn and complex amplitudes an and bn. These amplitudes have to

be determined by applying the boundary conditions at each dielectric interface, plus an initial con-

dition. Since the boundary conditions are easily worked-out on the in-plane field components, it is

convenient to find the relationship between the latter and the amplitudes an and bn. Using the fol-

lowing matrix notation for the in-plane field components [[h‖(z)]]G = (hx(k + G; z), hy(k + G; z))T

and [[e‖(z)]]G = (−ey(k + G; z), ex(k + G; z))T (note the skew), where the q dependence has been

dropped2, the linear combination reads

[[h‖(z)]] =
∑
n

[[C]]n
(
eıqnzan + eıqn(d−z)bn

)
, (2.10)

where d is the thickness of the layer and 0 ≤ z ≤ d. If the arbitrary sing in
√

q2
n is chosen to make

Im{qn} > 0, an and bn are the maximum amplitudes of each wave in the layer. An expression

similar to Eq. (2.10) holds for the electric field components. For the sake of compactness, define

once again a matrix notation, [[q]]n,n′ = qnδn,n′ , [[f(z)]]n,n′ = eıqnzδn,n′ , [[a]]n = an, [[b]]n = bn and

define [[C]] as the matrix, whose column vectors are [[C]]n. A few further steps yield to the following

equation, where the field components are expressed in terms of the amplitudes:



[[e‖(z)]]

[[h‖(z)]]


 =




(
ω2 − [[K]]

)
[[C]][[q]]−1 − (

ω2 − [[K]]
)
[[C]][[q]]−1

[[C]] [[C]]




︸ ︷︷ ︸
[[M ]]




[[f(z)]][[a]]

[[f(d− z)]][[b]]


 . (2.11)

2In the linear combination, the dependence on the vertical wave-vector q is dropped, because it is not a good
“quantum number” any more. Notice also that in other expressions, like [[ci]]G = ci(k + G, q), the q-dependence has
been replaced by n, the label for the eigenvalues.
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By exploiting the orthogonality relationship (2.9), the inverse of [[M ]] is

[[M ]]−1 =
1
2




[[q]][[C]]T [[C]]T
(
ω2 − [[K]]

)

−[[q]][[C]] [[C]]T
(
ω2 − [[K]]

)


 . (2.12)

With [[M ]] and its inverse one can obtain the in-plane field components from the amplitudes and

vice versa. Note that, if the plane-wave expansion has dimension N , [[M ]] is a 4N × 4N matrix.

These quantities are used to construct the scattering matrix of the whole structure.

The scattering matrix relates the amplitudes of forward and backward waves in different layers

of the structure. More precisely, the amplitudes of the ingoing waves are found in terms of those

of the outgoing ones. Since the amplitudes are vectors of dimension 2N , the scattering matrix [[S]]

must have dimensions 4N × 4N :



[[a]]j

[[b]]j′


 = [[S(j′, j)]]




[[a]]j′

[[b]]j


 =




[[S]]11 [[S]]12

[[S]]21 [[S]]22







[[a]]j′

[[b]]j


 . (2.13)

where j and j′ represent two layers and [[S]]il are 2N × 2N matrix blocks of the scattering matrix.

The amplitudes in two adjacent layers are related by the so-called interface matrix [[I(j, j + 1)]],

which is defined by



[[f ]]j [[a]]j

[[b]]j


 = [[I(j, j + 1)]]




[[a]]j+1

[[f ]]j+1[[b]]j+1


 =




[[I]]11 [[I]]12

[[I]]21 [[I]]22







[[a]]j+1

[[f ]]j+1[[b]]j+1


 , (2.14)

where [[f ]]j = [[f(dj)]]j . The interface matrix contains the electromagnetic boundary conditions, i.e.

continuity of the in-plane field components of E and H. Such condition is satisfied by applying

Eq. (2.11) in the (j + 1)-th layer, using z = 0. This gives the in-plane components at the right-

side of the interface, in terms of the amplitudes in the (j + 1)-th layer. Thereafter, the in-plane

components of the left-side (equal to those of the right-side) are transformed into the amplitudes

of the j-th layer, by application of the inverse equation (2.12), for the j-th layer and z = dj . In

other words, the interface matrix is simply given by

[[I(j, j + 1)]] = [[M ]]−1
j [[M ]]j+1 . (2.15)

Once that the interface matrix is known, the scattering matrix is computed layer-by-layer by

recasting Eq. (2.14) into Eq. (2.13). If [[S(j′, j)]] is the scattering matrix between the j′-th and the
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j-th layers, the scattering matrix between the j′-th and the (j + 1)-th layers follows the recipe

[[S(j′, j + 1)]]11 =
(
[[I]]11 − [[f ]]j [[S(j′, j)]]12[[I]]21

)−1 [[f ]]j [[S(j′, j)]]11 ; (2.16a)

[[S(j′, j + 1)]]12 =
(
[[I]]11 − [[f ]]j [[S(j′, j)]]12[[I]]21

)−1 (
[[f ]]j [[S(j′, j)]]12[[I]]22 − [[I]]12

)
[[f ]]j+1 ; (2.16b)

[[S(j′, j + 1)]]21 = [[S(j′, j)]]22[[I]]21[[S(j′, j + 1)]]11 + [[S(j′, j)]]21 ; (2.16c)

[[S(j′, j + 1)]]22 = [[S(j′, j)]]22[[I]]21[[S(j′, j + 1)]]12 + [[S(j′, j)]]22[[I]]22[[f ]]j+1 ; (2.16d)

where [[I]]il = [[I(j, j + 1)]]il. Using Eqs. (2.16a-d), plus the initial condition that [[S(j′, j′)]] = [[1]],

the scattering matrix of the whole heterostructure is built up one layer at a time. The stability of

the SMM relies on the fact that all the elements of [[f ]] have absolute value less than unity, because

of Im{qn} > 0. Therefore, the matrix inversion of Eqs. (2.16a-b) is dominated by the non-singular

matrix [[I]]11. It is worth to remark, however, that the orthogonality of the eigenvectors is important

not only in the analytical derivation of [[M ]]−1, but also for a well behaved numerical inversion of the

matrices in Eqs. (2.16a-b). Indeed, it has been found that the order of magnitude of the accuracy

in defining two eigenvectors orthogonal propagates to the accuracy in computing the inverse of

([[I]]11 − [[f ]]j [[S(j′, j)]]12[[I]]21). In order to calculated reflection, transmission and diffraction, one

needs the scattering matrix of the whole structure, i.e. [[S(0, N)]], if j = 0 labels the surface and

j = N the substrate.

In a reflectance calculation, the initial condition is an incident plane wave impinging the surface

of the heterostructure; namely [[a]]0 is determined by the incident geometry and [[b]]N = 0. Then, [[b]]0

refers to reflected and diffracted waves at the surface, while [[a]]N is for transmitted and diffracted

waves in the substrate. The relationship between these amplitudes is given they the scattering

matrix:

[[b]]0 =[[S(0, N)]]21[[a]]0 [[a]]N =[[S(0, N)]]11[[a]]0 . (2.17)

What remains is to write the amplitudes in terms of the external plane waves. Eqs. (2.11) and

(2.12) provide the required expressions to pass from one quantity to the other one, and vice versa.

Define the incident plane wave (i) of frequency ω, with its polarization and direction of propagation,

by means of the polar coordinates (θ, φ), see Fig. 2.3. If ε is the dielectric constant of the external
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Figure 2.3 Kinematics of reflection r and diffraction d in air. The diffrac-
tion angles, θ′ and φ′, are determined by energy and momentum
conservation. i is the incident beam with polar angles (θ, φ) and
n̂ is the normal to the surface α.

medium (usually air), the associated in-plane wave-vector is written as

k = ω
√

ε sin θ (x̂ cosφ + ŷ sinφ) , (2.18)

(remember that ω/c → ω). Then, the plane wave is classified according to parity with respect to

the plane of incident. The TE (odd) and TM (even) waves have field components

ETE =
4πω

c
Z1/2 (x̂ sinφ− ŷ cosφ) , (2.19a)

HTE =Z−1/2 (x̂ cos θ cosφ + ŷ cos θ sinφ− ẑ sin θ) ,

ETM =
4πω

c
Z1/2 (x̂ cos θ cosφ + ŷ cos θ sinφ− ẑ sin θ) , (2.19b)

HTM =− Z−1/2 (x̂ sinφ− ŷ cosφ) ,

multiplied by the phase factor exp(ık · x + ıqz). Z is the intrinsic impedance of the external

medium. The normalization is chosen so that the true Poynting vector P = c/(4πω)E×H has

unit magnitude. The incident TE or TM plane wave has to be translated into the amplitude [[a]]0.

If the lattice period is sufficiently short that the in-plane wave-vector lies within the Brillouin zone,

the fields of Eq. (2.19a) or Eq. (2.19b) correspond to the G = 0 components of the in-plane fields
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[[e‖]] and [[h‖]] and the others (G 6= 0) are all zero. The reflected wave (r) is obtained from the

G = 0 component of the amplitude [[b]]0, which is then resolved into TE-TM polarization using the

polarization projector operators. The reflection coefficient R is simply the Poynting vector of the

reflected wave. All the G 6= 0 components of [[b]]0 correspond to evanescent waves and contribute

to the near field.

When the in-plane wave-vector of the incident wave is sufficiently large to lie outside the Brillouin

zone, diffraction takes place. If G is the reciprocal vector that brings the wave-vector inside the

Brillouin zone, the incident wave provides the G-th components to [[e‖]] and [[h‖]], while all others are

zero. The reflected wave is obtained by taking the same G-th components of the fields calculated

from [[b]]0. All the other components corresponding to non evanescent waves will contribute to

diffraction (d). The same rule apply for transmission and diffraction in the substrate.

The whole procedure can be represented by the following scheme

TE or TM
incident wave (i)

(ω, θ, φ)
⇒ [[a]]0

G-th comp.
⇒ [[S(0, N)]] ⇒





[[b]]0 ⇒





reflection (r)
(ω, θ, φ)

, if G′ = G;

diffraction (d)
(ω, θ′, φ′)

, if G′ 6= G and
ω2ε > (k + G′)2

;

[[a]]N ⇒





transmission (t)
(ω, θ′′, φ)

, if G′ = G;

diffraction (d)
(ω, θ′, φ′)

, if G′ 6= G and
ω2εs > (k + G′)2

;

where θ′′ obeys Snell’s law: sin θ′′ =
√

εs/ε sin θ, with εs as the substrate dielectric function. The

angles of the diffracted waves (θ′, φ′) are found by imposing the constraints of energy and in-plane

momentum conservation. Eventually, the reflected, transmitted and diffracted waves are resolved

into TE and TM polarization, before that the corresponding Poynting vectors are calculated. Since

the incident power is normalized to unity, the final expressions for reflection (R), transmission (T )

and diffraction (D) coefficients are:

R = P (r) , T = P (t)
cos θ′′

cos θ
, D = P (d)

cos θ′

cos θ
+ P (s)(d)

cos θ′(s)

cos θ
,

where P (r, t, d) are the respective Poynting vectors and (s) means substrate. Notice that the
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diffraction coefficient accounts for diffraction in both sides of the structure. If all media are lossless,

then (T + R + D)(TE) + (T + R + D)(TM) = 1. On the contrary, in the presence of absorption, the

sign = must be replaced by <.

In conclusion, the numerical operations required by the SMM are: inversion of the N × N

dielectric matrix, diagonalization of the 2N × 2N “hamiltonian” general real or complex matrix,

Gram-Schmidt’s orthogonalization for degenerate eigenvectors, and inversion of a general 2N ×2N

complex matrix. It is apparent that the method is much more demanding than the standard

plane-wave expansion used for computing the band structure of two-dimensional photonic crystals.

That is why convergence tests are fundamental for determining the best trade-off between accuracy

and speed [Whittaker, D. M., et al. (1999)]. For typical layered semiconductors, calculations

performed with 61-109 plane waves are satisfactorily accurate, if the inversion of the dielectric

matrix is performed using the inverse rule [Li, L. (1996)].

As a last remark, it is noticeable that the SMM is particularly suitable for modelling realistic

conditions, because the calculation can be performed including either any material dispersion ε(ω),

either absorption Im{ε} 6= 0. Not to mention that the freedom in choosing a certain one- or two-

dimensional pattern, or choosing the vertical profile of the heterostructure, as well as the number

of layers, is practically no-limits. Furthermore, the method can also treat uniaxial media, after

minor changes to the code. Some more work is needed instead, if one wants to use the SMM for the

calculation of emission spectra [Whittaker, D. M., et al. (1999)]. In this context, the method will

be used only for computing reflection, transmission and diffraction of semiconductor-based photonic

crystals. In specific cases, material dispersion and absorption are included to fit the experimental

reflectance, but, most of the times, the dielectric function is chosen to be a constant.

2.2.3 Reflection, Transmission and Diffraction

To better understand the optical properties of photonic crystals, consider for a moment the

simplest case: a suspended dielectric membrane with a one-dimensional pattern, like the system

discussed in Sec. 1.4.2: core dielectric constant ε = 12, waveguide thickness d = 0.5a and air

filling ratio f = 30%. The incidence angles θ and φ are chosen to be 50◦ and 0◦, respectively,

where φ is with respect to the axis aligned with the direction of periodicity. A TM-polarized
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Figure 2.4 TM-polarized transmission, reflection and diffraction for the air
bridge one-dimensional photonic crystal of Fig. 1.10. Parame-
ters: ε = 12, d = 0.5a, and f = 30%. Incident wave: θ = 50◦,
φ = 0◦ and TM-polarization. Diffr. (R) and Diffr. (T) mean
diffraction above and below the membrane, respectively.

incident beam samples the photonic states that lie above the light line: reflection, transmission and

diffraction are calculated for a/λ = ωa/2πc from 0.2 to 0.7. Because the plane of incidence is a

mirror plane for the system, the whole process preserves the initial polarization, so that the TM

→ TE conversion is zero. For the same reason, the external wave couples only to photon states

that have the same symmetry with respect to the plane of incidence. Then, the incident beam

is reflected and transmitted. Moreover, if the frequency is high enough to be above the folded

light line ω/c = |k + G|, diffraction occurs too. Notice that the polarization is conserved also

in the diffraction process, because the diffracted beams lie in the plane of incidence. There are

infinite diffraction cut-offs ωc, which are determined by imposing that ωc/c = |k + G|. The cut-off

frequencies can be expressed in terms of the incidence angles by the formulae (2.20): the first one

is for φ = 0, whereas the second one is for the general case. n ∈ N represents the diffraction order

and corresponds to G = n2π/a.
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ωca

2πc
=

n

1 + sin θ
,

ωca

2πc
=

n√
1− sin2 φ sin2 θ + cosφ sin θ

. (2.20)

Fig. 2.4 shows reflection, transmission and diffraction for the above mentioned initial conditions.

Since the pattern is one-dimensional, the curves have been calculated employing only 31 plane

waves. Diffr.(R) represents diffraction in the top cladding, while Diffr.(T ) is for diffraction in the

bottom cladding. They exhibit the same cut-off (a/λc = 0.566), because both external media are

air. Notice that T + R + D is equal to one below and above the diffraction cut-off, as it has to

be. The anomalies in either reflection, transmission or diffraction correspond to the excitation of

quasi-guided modes of the photonic-crystal slab; see for example the sharp resonance at a/λ ' 0.66,

which matches a mode visible in Fig. 1.10. Notice also that diffraction is the dominant process

above its cut-off.
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Figure 2.5 Reflection and diffraction for the air bridge one-dimensional
photonic crystal of Fig. 1.10. Parameters: ε = 12, d = 0.5a, and
f = 30%. Incident wave: θ = 50◦, φ = 30◦ and TM-polarized.

Fig. 2.5 shows the TM → TE conversion in reflection and diffraction for the same air bridge

system, when the TM-polarized incident wave impinges with angles θ = 50◦ and φ = 30◦. Now,

the plane of incidence does not represent a mirror plane any more. Furthermore, as the incidence
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angles have changed, the diffraction cut-off is different from the previous case. Using Eq. 2.20,

the cut-off is found to be a/λc = 0.63. The polarization conversion is rather relevant for certain

frequency values. This is due to the strong anisotropy induced by the one-dimensional pattern; for

a two-dimensional photonic crystal, the polarization conversion is overall weaker.

For two-dimensional photonic crystals, the study of diffraction is more complicated, of course,

but it is conceptually identical to the one-dimensional case: the cut-offs are always given by

ωc/c = |k + G|, where now G spans two dimensions. Again, the polarization conversion is null if

the plane of incidence corresponds to a mirror plane of the photonic crystal.

The SMM is now applied to two-dimensional photonic crystals and photonic-crystal slabs to

study their optical properties and extracting information on the photonic band dispersion. More-

over, for photonic-crystal slabs only, the method is also used to evaluate the propagation losses of

the guided resonances.

2.3 Two-Dimensional Photonic Crystals

For in-plane propagation, two-dimensional photonic crystals have been shown to have Bloch

modes with well defined polarization states, according to parity with respect to the plane of pe-

riodicity, called H -modes (even) and E -modes (odd). Furthermore, each state can be specified

by association to a certain irreducible representation of the corresponding small point group. In

Sec. 1.3.2, the group theory analysis has been helpful in understanding the formation of photonic

bands, with emphasis on the removal of degeneracy and on the photonic band gap. The present

objective is to study how symmetry properties affect the determination of the band structure car-

ried out with the VAR technique; in other words, how the external field couples to photonic-crystal

modes. Also, the aim is to show that the method is suitable for obtaining the dispersion relation of

two-dimensional photonic crystals, without need of embedding the system in a waveguide config-

uration. This is a remarkable feature, because it goes beyond to the original argument, borrowed

from grating theory, that the sharp resonances in the reflectance curve correspond to the excitation

of guided resonances in a photonic-crystal slab [Astratov, V. N., et al. A (1999)]. More generally,
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the anomalies in reflectance of two-dimensional photonic crystals are due to matching of the exter-

nal field with a Bloch state, which behaves like a one-dimensional critical point, whose density of

state is given by photon dispersion in the vertical direction only, whereas the in-plane momentum

is conserved.

For what concerns the theoretical implementation of a VAR study on two-dimensional photonic

crystals, the calculation is easily accomplished by applying the SMM to a system composed by

two semi-infinite layers, air and two-dimensional photonic crystal, with a common interface. The

presence of the interface breaks the symmetry with respect to the plane of periodicity, so that the

classification into H -modes E -modes is not rigorously valid anymore. Nevertheless, the bulk dis-

persion relation is not modified at all by the surface and the SMM samples a truly two-dimensional

photonic band structure.

As regards an experimental realization of the above analysis, if one wants to measure bands in

the near-infrared frequency regime, macro-porous silicon is the unique system that provides high

aspect ratios for obtaining a two-dimensional photonic crystal. Therefore, the possibility of a direct

comparison with experimental curves and theory makes macro-porous silicon the preferable system

for studying the optical properties of two-dimensional photonic crystals.

2.3.1 Macro-Porous Silicon Photonic Crystals

Macro-porous silicon photonic crystals are obtained by electrochemical etching of n-type bulk

silicon samples [Lehmann, V., et al. (1990); Grüning, U., et al. (1996)]. The resulting pores have

regular shape and are organized according to a two-dimensional lattice, which provides a periodic

modulation of the dielectric function in the plane parallel to the sample surface. Unlike waveguide-

based photonic crystals, macro-porous silicon can be considered as homogenous along the hole axes,

since pores of 50− 100µm depth can be achieved, while the lattice constant can be of the order of

1−2µm [Birner, A., et al. (1998); Rowson, S., et al. (1999)] or even less. The above features show

that macro-porous silicon is an ideal system for studying the optical properties of two-dimensional

photonic crystals from mid-infrared (10µm) to telecommunication wavelengths (1.3, 1.5µm). It is

worth to mention that recent studies have also investigated defect states created in macro-porous

silicon, namely waveguides [Leonard, S. W., et al. (2000)] and micro-resonators [Kramper, P., et
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al. (2001)], but not in the spirit of the VAR technique. It is worth to mention that there are also

attempts to attain vertical confinement in macro-porous silicon [Schilling J., et al. A (2001)].

Figure 2.6 AFM image of a macro-porous silicon photonic crystal (dimen-
sions: 10 × 8.4µm). The lattice constant is a = 2µm and the
hole radius is r = 0.24a. Courtesy of Patrini, M., Università
degli Studi di Pavia, Italy, and Bettotti, P., Università degli
Studi di Trento, Italy.

Fabrication Method

As already mentioned, macro-porous samples are prepared by electrochemical etching of a pre-

patterned substrate. More precisely, a two-dimensional lattice is defined by standard lithography

on a silicon substrate with 〈100〉 orientation and the initial etch pits are transferred to the sub-

strate by a hot KOH treatment (alkaline etching). The resulting inverted pyramids act like initial

pores. The next step consists of etching deep and regular holes through an electrochemical process.

Substrates with n-type or p-type doping can be used, though the original method was developed

on n-type silicon [Lehmann, V., et al. (1990)]. For n-type substrates, deep pores are etched under

anodic bias and stabilized backside illumination in hydrofluoric acid. The pore formation relies on

the dissolution of silicon, promoted by the electrons generated by the backside illumination and

diffused by the anodic bias. The presence of the initial pits attracts the diffused electrons, so that

silicon is dissolved much faster than elsewhere. Stabilized illumination is necessary for obtaining a

constant diameter as the etching process advances. While the two-dimensional lattice is defined by
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lithography, the hole diameter (air filling ratio) is controlled by the illumination intensity. After the

etching process, variations of the hole shape both with depth and with the neighboring holes can be

very small. The etch pits are then removed by polishing with diamond powder. Sometimes, a subse-

quent oxidation/etching step is used to increase the hole diameter and correct possible irregularities.

The sample under investigation has a triangular lattice with circular pores having a center-to-

center distance a = 2µm and hole radius r = 0.24a. An atomic force microscopy (AFM) image of

the sample is shown in Fig. 2.6. In the next section, the photonic bands are extracted from VAR

curves calculated with the SMM and compared to experimental data. A symmetry analysis will

explain the selection rules of the process. Arguments on the line-shape of the anomalies seen in

reflectance curves are also given. For a more detailed study of this sample, please refer to Galli,

M., et al. A (2002).

2.3.2 Reflectance and Selection Rules

VAR from the sample surface is calculated by means of the SMM along the Γ−K and Γ−M

crystal orientations, for both TE and TM polarizations, employing 151 plane waves. The material

dielectric function is assumed to have a small dispersion, from 11.7 at 0.15eV up to 11.8 at 0.5eV,

and no absorption. Fig. 2.7 shows the calculated reflectance for TE-polarized light incident along

the Γ−K orientation; Fig. 2.8 compares the measured and calculated reflectance along Γ−K for TE

and TM polarizations. Experimental data are courtesy of Galli, M., Università degli Studi di Pavia,

Italy. The reflectance curves of the macro-porous silicon sample display prominent features with a

well defined dispersion as a function of incidence angle. There is a good overall agreement between

the experimental and calculated spectra as regards to the number of structures in reflectance and

their dispersion, although the experimental line-shape is more complex than the theoretical one.

The spectral strength of the structure depends on the angle θ. Most features become vanishingly

weak at θ = 5◦, where only one strong structure at 0.29eV is observed.

The results of Figs. 2.7 and 2.8 (and the analogous ones for reflectance along Γ−M , not shown here)

are interpreted in the following way. When the frequency ω and the in-plane wave-vector k match

those of a photonic mode propagating in the plane, a diffracted beam is created in the material and
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Figure 2.7 Calculated reflectance for the macro-porous silicon sample of
Fig. 2.6 with TE polarized light incident along the Γ −K ori-
entation. The angle of incidence is varied from 5◦ to 60◦ with
a step of 5◦. Vertical bars mark the positions of 2D photonic
modes for 5◦ and 60◦.

a corresponding structure appears in reflectance. This is very clear in the calculation, where the

onset of a diffracted beam corresponds to a complex wave-vector component q that goes through

zero and becomes real. In the work by Astratov, V. N., et al. A (1999), a similar approach was

used for patterned GaAs-based waveguides. However, in the present case, there is no waveguide

and a structure in reflectance marks the onset of a photonic mode, which is excited and remains

propagating also for higher frequencies.

While most features in the experimental curves show a typical dispersive shape, the calculated

curves exhibit a discontinuous derivative in correspondence of the onset of a photonic mode, such

as for critical-point transitions [Bassani, F., et al. (1975); Cardona, M., et al. (1996)]. This

“universal” line-shape is broadened in the experiments, probably because of sample inhomogeneity.

Each critical point in reflectance is related to a singularity in the diffracted intensity D(ω), which

may be calculated by interpreting the excitation of a photonic mode as an “absorption” process
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Figure 2.8 (a),(c): experimental reflectance of the sample of Fig. 2.6 for
light incident along the Γ−K orientation, for TE and TM polar-
izations; courtesy of Galli, M., Università degli Studi di Pavia,
Italy. (b),(d): calculated reflectance. The angle of incidence is
varied from 5◦ to 60◦ with a step of 5◦. The curves at 5◦, 10◦

and 15◦ are slightly off-set for clarity. Inset to (b): diffracted
intensity corresponding to the allowed mode at θ = 5◦ (onset
marked by arrows).
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Figure 2.9 Top panels: photonic bands of a triangular lattice of air holes
in silicon with a = 2µm, r = 0.24a; (a) E -modes, (b) H -modes.

(the intensity of the diffracted beam is removed from specular reflectance and transmittance): thus

D(ω) may be expressed as

D(ω) ∝
∫

dk′
∫

dq δk′,kδ(~ω − E(k′, q)) , (2.21)

where |k| = (ω/c) sin θ. The parallel wave-vector k is conserved and the out-of-plane dispersion of

all bands (except close to the special point ω = 0) is quadratic in q, around q = 0 [Joannopoulos,

J. D., et al. (1995)], with a threshold E(k, 0) ≡ E0. Thus Eq. (2.21) yields D(ω) ∝ (~ω−E0)−1/2,

like for a one-dimensional density of states. The inset of Fig. 2.8b shows the calculated diffracted

intensity of the allowed mode at near-normal incidence, which indeed has the form of an inverse

square root close to the threshold E0=0.29eV. A similar behavior is found for all diffracted rays,

proving that each spectral feature in reflectance corresponds to a one-dimensional critical point.

The selection rules for specular reflectance are discussed starting from the symmetry proper-

ties of the system. The photonic band structure of the photonic crystal under investigation, for

in-plane propagation, is classified into H -modes and E -modes, as displayed in Fig. 2.9. Recall that
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the point group of the triangular lattice is D6h, view as direct product of C6v and Cs. The small

point group is C2v for the Γ −M , Γ −K and M −K directions, though the twofold axis of C2v

differs in the three cases. Recall also that the twofold degenerate levels at Γ can have Γ+
5 or Γ−6

symmetry for E -modes and Γ−5 or Γ+
6 for H -modes; Γ+

5 (Γ−5 ) is the symmetry of the xy component

of a pseudovector (vector), see Sec. 1.3.2. The surface of the crystal breaks mirror symmetry with

respect to the x − y plane, so that the reflection σxy is not a symmetry operation anymore. The

photonic modes should then be classified according to the subgroup C6v of the point group at Γ

and the corresponding subgroups at other k points. Along the Γ −M and Γ − K directions the

small point group becomes Cs, i.e. specular reflection with respect to the plane of incidence is the

only symmetry operation besides the identity.

The general selection rule can be stated as follows: a photonic band can appear in reflectance only

if it has the same symmetry of the incident electromagnetic field. At normal incidence, the electric

field (Ex, Ey) as well as the magnetic field (Hx, Hy) transform similar to the twofold degenerate

representation Γ5 of C6v. The irreducible representations of D6h that reduce to this representation

are Γ+
5 and Γ−5 , which implies that only states with symmetries Γ±5 can appear in reflectance. Such

selection rule is obeyed in reflectivity curves of Figs. 2.7 and 2.8; in particular, the strong structure

around 0.29eV at θ = 5◦ corresponds to the allowed band with symmetry Γ−5 , see Fig. 2.9.

Concerning now selection rules along Γ−M and Γ−K, notice that these are the only orientations

for which the plane of incidence is also a mirror plane of the structure: the photonic bands can be

classified as even or odd with respect to this mirror symmetry. A TE wave is odd for specular re-

flection with respect to the plane of incidence, while a TM wave is even. Therefore, a TE-polarized

wave interacts with photonic bands that are odd for specular reflection in the vertical mirror plane,

while a TM-polarized wave interacts only with even bands. Odd photonic bands correspond to Σ3

and Σ2 representations of C2v for Γ −M (T3 and T2 for Γ −K), while even bands correspond to

Σ1 and Σ4 for Γ−M (T1 and T4 for Γ−K).

Notice that an incident plane wave can interact with both E− and H -modes of the photonic struc-

ture. For this reason, it is appropriate to compare the photonic bands extracted from a reflectivity

experiment not with those of E- and H -modes, but rather with those of the same parity with

respect to a specular reflection in the plane of incidence. Such comparison is shown in Fig. 2.10.
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Figure 2.10 Measured dispersion of the photonic bands (points), derived
from the structures in reflectance curves; the solid and dashed
lines are the same photonic bands of Fig. 2.9, separated ac-
cording to parity with respect to the plane of incidence: (a)
TE polarization, odd modes, (b) TM polarization, even modes.
The open triangles in (b) represent diffraction in air and must
be compared with the folded free-photons dispersion (dotted
lines).

It can be seen that some non degenerate bands “stop” at the Γ point for a given polarization and

“restart” in the other polarization: this peculiar behavior is due to the fact that the mirror plane

changes when turning from the Γ − M to the Γ − K direction. The experimental points agree

very well with the calculated photonic bands of the proper parity. Anti-crossings are seen to occur

between bands of the same symmetry, e.g. between two Σ2 states and between two T2 states around

0.3-0.36eV.

Not all bands that are allowed by symmetry appear in reflectance curves. This is not in contrast

with the selection rule: an allowed band may have a nonzero, yet very weak, spectral strength.

Indeed, theoretical simulations with a very fine mesh indicate that weaker structures are present,

which in the experiments fall below the signal-to-noise ratio. It is interesting to remark that most
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measured photonic bands correspond to H -modes. This may be understood since, at normal inci-

dence, the Γ−5 mode at 0.29eV is much more intense than Γ+
5 . At oblique incidence, the photonic

bands that are forbidden at k = 0 gain spectral strength by mixing with allowed bands: since only

one strong feature Γ−5 is present below 0.5eV, most photonic bands that appear in reflectance in

this energy range have H-mode character.

The experimental points, marked by open triangles in Fig. 2.10b, have a steep dispersion and do

not match any photonic band of the silicon material. However, they match the dispersion of light

in air, folded in the Brillouin zone: the corresponding structures in reflectance mark the onset of

diffraction in air. These structures depend only on the Bravais lattice (not on the pore shape or

depth) and would be present also for a shallow grating [Wood, R. W. (1902)]. In the present con-

text, these “Wood anomalies” represent photonic bands in the upper half-space and are intermixed

with photonic bands of the macro-porous silicon crystal.

In conclusion, the photonic bands of a two-dimensional photonic crystal can be determined by

variable-angle reflectance: the spectral features, which yield the energy position of a photonic mode

at q = 0, are interpreted as one-dimensional critical points. Only bands with the same symmetry

of the incident electromagnetic field can appear in reflectance. The selection rules derived from

symmetry show that the photonic modes behave similar to other elementary excitations in solids.

The same analysis is now applied to two-dimensional photonic-crystal slabs.

2.4 Two-Dimensional Photonic-Crystal Slabs

As already mentioned, the VAR technique has been first performed on weak index-contrast

photonic crystal slabs [Astratov, V. N., et al. A (1999)]. Both theory and experiment can be

conducted very much the same as shown for two-dimensional photonic crystals. The SMM has now

to deal with two semi-infinite layers (air and substrate) separated by a certain number of finite-

thickness layers, which form the desired planar waveguide. Then, each layer has to be patterned,

completely or partially, to obtain the photonic crystal structure. It is intuitive that the core layer

must be completely perforated in order to attain well defined resonances; a more detailed study on
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that will be reported in Sec. 2.5. As discussed in Sec. 1.4, there is too much freedom in choosing

the structure parameters, for thinking of a systematic and comprehensive study of all possible

heterostructure geometries. That is why, the idea is again to group several systems into classes

that exhibit similar features and restrict the study to representative cases only. Moreover, while in

Sec. 1.4 the study has been focussed on photonic-crystal slabs characterized by infinite etch-depth,

with the SMM it is possible to extend the study to more realistic systems, with finite etch-depth

and also material dispersion and/or absorption.

In the present section, two cases will be shown: the air bridge system, corresponding to a

high-index-contrast photonic-crystal slab, and a GaAs-based photonic crystal, which is for the

weak-index contrast case. The SMM is used to extract the photonic band structure existing above

the light line, as seen for macro-porous silicon photonic crystals. The aim is also to show that the

band-structure picture is meaningful for interpreting the guided resonances, or quasi-guided modes,

as stated in Sec. 1.4.2, and that the numerical method by Andreani, L. C. (2002) gives quantitative

results also for modes above the light line. Furthermore, from the analysis of reflectance spectra,

one finds again the selection rules described in the previous section for two-dimensional photonic

crystals. Indeed, the symmetries involved in the coupling process to the external field depend

only on the two-dimensional pattern, whereas the coupling strength may depend on the vertical

geometry and on the hole etch-depth too.

As a final remark, while for a two-dimensional photonic crystal each mode retains a dispersion

in the vertical direction, thus providing a behavior typical of a one-dimensional critical point in

the reflectance structures, for a two-dimensional photonic-crystal waveguide, the modes have only

in-plane dispersion, so that coupling to the external field appears as a resonant process, where ω

and k of the incident wave match those of a guided-resonance. This results in a typical dispersion-

like line-shape [Fan, S., et al. (2002)], in contrast to the “absorption-like” line-shape described in

Sec. 2.3.2.

2.4.1 The Air Bridge

The air-bridge system represents the simplest two-dimensional photonic-crystal slab, being made

of a single dielectric membrane suspended in air. Indeed, it is one of the few systems for which
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photonic bands and out-of-plane losses have been computed using ab-initio methods [Johnson, S. G.,

et al. (1999); Ochiai, T., et al. A (2001); Sakoda, K. (2001)], except the SMM. For this reason,

the air bridge is particularly suitable for testing the numerical method introduced in Sec. 1.4.1.

Here, the photonic bands are extracted from the reflectance curves and are compared with those

calculated by expansion on the guided modes of the effective waveguide.

Fig. 2.11a shows the reflectance for a TM-polarized plane wave incident along the Γ−K orientation

on the surface of an air-bridge photonic crystal slab, see Fig. 1.9d, made of a triangular lattice of air

holes, with radius r = 0.24a, and having a waveguide thickness d = 0.3a. The curves are shifted for

clarity. Sharp resonance features are readily apparent on the reflectance curves and may have the

form of maxima, minima, or often, of dispersive line-shapes. Fig. 2.11b displays the photonic band

dispersion determined from the curves of Fig. 2.11a (and the analogous ones for other orientations

and polarization, not shown) by taking the approximate central position of each resonance. Solid

(open) circles represent the points extracted from the reflectance curves for TM (TE) polarization

with respect to the plane of incidence. They are compared with the photonic bands of the air

bridge, which were already given in Fig. 1.11a, but, for the Γ−M and Γ−K directions, they are

now classified in terms of parity with respect to specular reflection σkz: the vertical plane coincides

with the plane of incidence. As found for two-dimensional photonic crystals, modes that are even

with respect to σkz (indicated by solid lines) couple only to TM-polarized incident light, while

odd modes with respect to σkz (dashed lines) couple to TE-polarized light. Notice that a linearly

polarized plane wave incident from the surface couples to both even and odd modes with respect to

σxy (H -modes and E -modes for a two-dimensional photonic crystal). Indeed, though the air-bridge

be still symmetric with respect to the xy plane, the initial condition of a plane wave incident from

the top surface breaks the symmetry in Maxwell’s equations and makes the wave couple to modes

of both parity. The same holds for macro-porous silicon, where the system is already asymmetric

because of the interface with air.

There is a very good agreement between the photonic bands calculated by the method of Andreani,

L. C. (2002) and those deduced from reflectance, when the proper parity with respect to σkz is

taken into account. This shows that the expansion in waveguide modes of the effective slab is

a reliable method for calculating the energies of quasi-guided modes and that the choice of the
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Figure 2.11 Reflectance and photonic bands of the air bridge system of
Fig. 1.9d, with thickness d = 0.3a and hole radius d = 0.24a.
(a) Calculated surface reflectance for a TM-polarized plane
wave incident along the Γ-K orientation of the two-dimensional
lattice. The angle of incidence is varied from θ = 0◦ to
θ = 60◦ with a step of 5◦. (b) Photonic bands. Lines rep-
resent the bands calculated from the expansion in waveg-
uide modes, while points are extracted from the calculated
reflectance. Solid lines and closed circles: even modes with re-
spect to a vertical mirror plane (k, z), probed by TM-polarized
light. Dashed lines and open circles: odd modes with respect
to a vertical mirror plane (k, z), probed by TE-polarized light.
The dotted line represents the dispersion of light in air. Both
reflectance and photonic bands have been calculated employ-
ing 109 plane waves.
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effective dielectric constant, as the spatial average of εj(x) in the j-th layer, is appropriate.

Other symmetry aspects of the reflectance calculation and of the photonic bands recall the

discussion made in Secs. 1.4.4 and 2.3.2. First, notice that there are a few bands, even with

respect to σkz along the Γ − M direction, which become odd along the Γ − K direction, or vice

versa. They correspond to photonic states that have a threefold, but not sixfold, symmetry at

the Γ point. Secondly, most resonance features in reflectance become vanishingly small at normal

incidence, except for a structure at ωa/2πc ' 0.57, which remains strong at θ = 0◦ and splits into

two at oblique incidence. The explanation for that has already been given in Sec. 2.3.2: since the

only photonic modes, which can be excited, are those having the same symmetry of the incident

electromagnetic field and the latter belongs to a twofold degenerate representation of the point

group at Γ, non degenerate bands must be optically forbidden at θ = 0◦. The twofold degenerate

photonic mode at ωa/2πc = 0.57 is optically allowed and its energy can be determined from normal-

incidence reflectance. The same argument implies that non degenerate bands have zero radiative

line-width at k = 0 [Ochiai, T., et al. A (2001)]. Nevertheless, if these photonic states lie above

the folded light line, they can couple to the diffracted field in air, which is not twofold degenerate,

being θ 6= 0◦. For this reason, such modes acquire a finite radiative line-width: even though the

diffraction process of zero-th order is optically forbidden, coupling to the external field is provided

by the diffraction processes of higher order [Andreani, L. C., et al. B (2002)].

2.4.2 GaAs-based Photonic Crystals

Contrary to the air bridge, which supports both guided and quasi-guided modes, low index

contrast waveguides like the GaAs/AlGaAs heterostructure have only quasi-guided modes in the

whole energy spectrum, see Sec. 1.4. Nevertheless, as already shown for the air bridge system,

the guided resonances are well defined modes, though with an attenuation length, whose dispersion

resembles that of two-dimensional photonic crystals, apart some vertical confinement effects. In this

sense, due to the low index contrast of the planar waveguide, GaAs-based photonic crystals exhibit

a photonic band structure that differs not much from a pure two-dimensional system, as shown

in Sec. 1.4.3. This feature makes GaAs-based photonic crystal particularly interesting, because

the dispersion and the band gap properties studied for two-dimensional photonic crystals can be
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transferred to a realistic system, with the advantage of vertical confinement, but also with the

unavoidable price of intrinsic propagation losses. However, the GaAs/AlGaAs system discussed in

Sec. 1.4.3 is not realistic, because it is not possible to attain an infinite etch depth, besides the

impossibility of growing semi-infinite cladding and substrate. The common waveguide configuration

for GaAs-based photonic crystals consists of a core layer of GaAs, capped with a thin layer of

AlGaAs, before the interface with air, and clad with another layer of AlGaAs, to separate the core

layer from the GaAs substrate. The pattern must be deep enough to reach the bottom cladding.

Since the top cladding is not strictly necessary (it just makes the waveguide more symmetric),

sometimes the core layer is directly interfaced with air, see Fig. 2.12. Even though the resulting

structure has a strong asymmetry, the absence of the top cladding allows to etch deeper holes in

the bottom cladding, where the control of out-of-plane losses is more critical, due to the presence

of a high index substrate.

Figure 2.12 Cross-section of a typical GaAs-based photonic crystal.

Measurements of the dispersion of quasi-guided modes have been performed on GaAs-based

photonic crystals patterned with a triangular lattice of holes [Astratov, V. N., et al. A (1999)], as

this structure is the “conventional” one for obtaining a polarization-sensitive band gap at relatively

small air fractions, or with a one-dimensional lattice of stripes [Astratov, V. N., et al. (2000)].

Similar measurements have been performed on GaN/sapphire waveguides, also patterned with a

triangular lattice of holes [Coquillat, D., et al. (2001)]. The study of the photonic bands of different
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lattices is interesting in order to investigate the dependence of the photonic band dispersion and

band gaps on the lattice symmetry and on the basis. Various kinds of “non-conventional” lattices

and symmetry reduction have been theoretically studied for the two-dimensional case [Villeneuve,

P. R., et al. (1992); Padjen, R., et al. (1994); Anderson, C. M., et al. (1997); Wang, X.-H.,

et al. (1999); Agio, M., et al. A (2000)]; however, there are only a few cases that have been

studied in a waveguide configuration. Thus, since there is much literature on the determination

of the photonic band structure of photonic-crystal slabs with a triangular lattice, it is worth to

live the mainstream for a while and focus the attention on a different kind of pattern, which has

been shown to exhibit a complete band gap in a range of filling factors near to the close-packing

condition [Wang, X.-H., et al. (1999); Agio, M., et al. A (2000)] and has also been studied by

means of the VAR technique [Galli, M., et al. B (2002)]. It is about the so-called chessboard

lattice.

The Chessboard Lattice

The chessboard lattice consists of square columns of either dielectric or air rotated by 45◦ with

respect to the square axes of the lattice, see Fig. 2.13a-c. The structure is characterized by the

filling factor f of the dielectric, which is related to the lattice constant a and the column diagonal

b by f = b2/2a2, in the case of dielectric columns [Fig. 2.13a], or f = 1 − b2/2a2, for air columns

[Fig. 2.13b]. For the close-packed condition b = a, or f = 0.5, the two cases become equivalent

and the structure resembles a chessboard. For convenience, refer to the structure of Fig. 2.13 as

“chessboard” lattice for every value of f . Fig. 2.13c represents the Brillouin zone for a square

lattice, with symmetry points.

The photonic band structure is calculated by means of the plane wave expansion method, where

the Fourier transform of the dielectric constant εG′,G′′ = ε(G′ −G′′) = εG → εGx,Gy reads

εGx,Gy =





fεdiel + (1− f), G = 0;

4(εdiel − 1)
cos(Gyb/2)− cos(Gxb/2)

a2(G2
x −G2

y)
, G 6= 0;

(εdiel − 1)b
sin(Gxb/2)

a2Gx
, G 6= 0 and Gy = ±Gx.

(2.22)
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Figure 2.13 (Left panels) The chessboard lattice: (a) dielectric rods in air,
(b) air rods in dielectric. The dashed lines mark the unit cell,
a is the lattice constant and b is the rod diagonal; (c) the
Brillouin zone with symmetry points, Γ, X, M . (Right panel)
Gap map for the chessboard-lattice two-dimensional photonic
crystal for a background dielectric constant εdiel = 12. A black
spot corresponds to the existence of a band gap for both po-
larizations.

Choosing εdiel = 12 as the material dielectric constant, the chessboard lattice is found to have

a complete photonic band gap, see Fig. 2.13, arising from overlap of the second E-polarized gap

with the first H-polarized gap. The full band gap exists for a range of filling factors around the

close-packing condition f = 0.5. The gap map shows that E-polarized gaps are favored for the

case of non overlapping dielectric columns (f < 0.5), while H-polarized gaps are favored in the

case of air columns (f > 0.5). Although the overlap of E- and H-polarized gaps does not follow a

simple rule, the existence of a complete band gap is related to the fact that the chessboard lattice,

near the close-packing condition, has both dielectric columns and connected dielectric regions. The

chessboard lattice has the same symmetry and simplicity of the conventional square lattice.

Fabrication Method

In order to fabricate samples with the above pattern, the first step is to define a mask by

e-beam lithography, see Fig. 2.14a, which is used to write the photonic-crystal design on to the
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(a) (b)

Figure 2.14 (a) SEM image of the chessboard lattice X-ray mask, with
a = 564nm. (b) Detailed SEM image of the epitaxial AlGaAs
slab after the etching process. Courtesy of Romanato, F. et
al., NNL - INFM, Italy.

GaAs/AlGaAs heterostructure surface. The mask consists of a chessboard lattice of squares with

282nm side, spaced by a lattice constant of 500nm. The GaAs/AlGaAs layers are grown by low

pressure metal organic chemical vapor deposition (LP-MOCVD), on 〈100〉-oriented semi-insulating

GaAs substrates. The resulting heterostructure consists of a 200nm GaAs buffer layer, followed

by 1630nm of Al0.25Ga0.75As and 570nm of GaAs as core layer, see Fig. 2.12. Proximity X-ray

lithography has been used to transfer the patterning to the samples. In fact, if the gap between

the e-beam mask and the heterostructure can be controlled at a micrometer level, one can exploit

diffraction effects to generate superstructure not found in the pattern of the original mask. Thus,

the interest in using X-ray lithography is that several two-dimensional patterns can be obtained

from a single mask [Romanato, F., et al. (2002)]. A pre-exposure process step requires the spinning

of resists on the sample surface: they are chosen of both tones (PMMA 1.07 and SAL 601), in order

to have positive and negative transfer of the mask patterning. Indeed, also the resist contribute

to obtaining different two-dimensional patterns, in combination with the X-ray diffraction control.

Then, a lift-off process has been performed by evaporating 10nm of nickel and stripping the resid-
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ual resist. Nickel indeed exhibits an extremely high selectivity to the reactive ion etching (RIE)

performed by an induced coupled plasma (ICP) RIE reactor in an atmosphere of 95% SiCl4 and

5% of Ar, and biasing the cathode at 230eV. The etching time was 5 minutes, leading to an etch

depth of about 1µm in the heterostructure, see Fig. 2.14b. More details on fabrication are given in

the paper by Romanato, F., et al. (2002).

Two samples have been studied under the VAR technique by Galli, M., et al. B (2002). The

first sample, called L2, has been patterned on PMMA resist and consists of air rings with an air

fraction of 12%: the shape of the rings reflects the tilted squares of the mask. The two-dimensional

pattern of the second sample, called RUN3, which has been obtained by exposing a SAL601 resist

film, is made of dielectric squares, also tilted by 45◦; the dielectric fraction is close to 28%.

The Sample L2

Fig. 2.15 shows a SEM image of the sample L2 and a sketch of its unit cell. The calculation

of both reflectance and photonic bands requires the knowledge of the dielectric constant in Fourier

space. However, the unit cell of Fig. 2.15 looks rather different (and more complicated) from the

original chessboard cell of Fig. 2.13. Now, the diagonal part of εG,G′ is simply f + (1 − f)εdiel,

where f is the air fraction of L2. The off-diagonal components of the Fourier transform of ε(x)

can be easily obtained from the expression of Eq. (2.22), by exploiting the following trick. Think

that the sample L2 is made of a chessboard lattice with air columns with side l1 = 0.47a (ε1(x)),

plus a chessboard lattice of dielectric columns with side l2 = 0.32a (ε2(x)), minus an homogenous

medium with ε = 1; i.e. ε(x) = ε1(x) + ε2(x) − 1. Plugging the above expression into Eq. (1.23)

and using Eq. (2.22) for ε1(x) and ε2(x), the final formula for εG,G′ is

εGx,Gy =





f + (1− f)εdiel, G = 0;

4(εdiel − 1)
[
cos(Gyb2/2)− cos(Gxb2/2)

a2(G2
x −G2

y)
− cos(Gyb1/2)− cos(Gxb1/2)

a2(G2
x −G2

y)

]
, G 6= 0;

(εdiel − 1)
[
b2

sin(Gxb2/2)
a2Gx

− b1
sin(Gxb1/2)

a2Gx

]
, G 6= 0 and

Gy = ±Gx

;

(2.23)

where b1 =
√

2l1 and b2 =
√

2l2. Notice that the homogenous contribution “−1” does not influence

the off-diagonal components of εG,G′ .
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Figure 2.15 Sample L2: unit cell (left) and SEM image (right). Courtesy
of Romanato, F. et al., NNL - INFM, Italy.

The symmetry properties and selection rules of the sample L2 recall in part those of the air bridge

and of macro-porous silicon. For a wave-vector k along a lattice direction (the Γ−X and the Γ−M

directions), specular reflection with respect to a vertical plane k− z is a symmetry operation and

the TE or TM polarization of the incident wave is maintained in reflectance. Correspondingly, the

photonic bands can be classified as even or odd with respect to vertical mirror symmetry. They

are probed by a polarized incident wave as follows: a TM-polarized wave couples to even bands, a

TE-polarized wave couples to odd bands. Note that for the present asymmetric air/GaAs/AlGaAs

structure there is no mirror symmetry with respect to the waveguide plane (unlike in the air bridge

and in homogeneous two-dimensional photonic crystals).

As regards the calculations, the two-dimensional dielectric pattern, displayed in Fig. 2.16, is ex-

pressed by Eq. 2.23. The thicknesses of core and cladding are taken from ellipsometry results: air

(semi-infinite), GaAs oxide 0.0029µm, GaAs 0.5764µm, AlGaAs 1.6386µm, GaAs substrate (semi-

infinite). For the calculation of photonic bands only the thickness of the core layer is used, since

the patterned lower cladding is assumed to be of semi-infinite extent. For the reflectance calcula-

tions, instead, the etch depth is also included: this is taken to be 1µm. The values are close to

those estimated from etching rates and they have been slightly adjusted in order to reproduce the

interference fringes in the reflectance spectra. Moreover, the reflectance calculation accounts for

the frequency-dependent dielectric constants of GaAs and AlGaAs [Palik, E. D. (1985)]. 109 plane

waves have been employed in the calculations.
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Figure 2.16 Experimental (a) and calculated (b) variable angle reflectance
for TE-polarized light incident along the Γ−M direction. The
angle of incidence is varied in steps of 5◦. The different curves
are vertically shifted for clarity. Experimental data courtesy
of Galli, M., Università degli Studi di Pavia, Italy.

The VAR spectra are presented in Fig. 2.16a for TE polarized light incident along the Γ−M

direction of the two-dimensional Brillouin zone. The corresponding calculated spectra are shown

in Fig. 2.16b. Similar results are obtained for light incident along the Γ −K orientation and for

TM-polarization (not shown here). The angle of incidence θ ranges from 5◦ to 60◦ in steps of 5◦ and

each curve corresponding to a different θ value has been vertically shifted by a constant quantity

in order to better appreciate the angular evolution of reflectance.

What can first be noticed in reflectance spectra are pronounced interference oscillations arising from

the multilayer structure of the system. The oscillations result from a combination of two different

interference patterns: one with a slowly-varying long-period one ad another one with fast-varying

short-period. These are related to the core layer and the core + cladding layers of the waveguide.

However, the period of the oscillations slightly changes upon increasing frequency. This effect could

be explained by considering that on increasing frequency the electromagnetic field gets more con-
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fined within the dielectric regions of the patterned waveguide [Joannopoulos, J. D., et al. (1995)].

This, in turns, leads to an effective refractive index, experienced by the incident radiation, that

increases with frequency and, therefore, changes the period of the interference. The interference

pattern is well reproduced by the calculation with the etch depth of 1µm. Besides the complex in-

terference background, several narrow structures (indicated by vertical bars in Fig. 2.16a for θ = 5◦

and θ = 60◦) are clearly observed. By increasing the angle of incidence, the energy positions of

these sharp features display a well-defined dispersion.

Once again, these narrow structures are ascribed to resonant coupling of the incident external radi-

ation to quasi-guided modes of the patterned waveguide, occurring whenever phase-matching condi-

tions are fulfilled. Upon varying the incidence angle, the in-plane wave-vector changes accordingly

and the different matching conditions lead to smooth energy dispersion of the resonances. There

is an overall good agreement between experimental spectra and calculated ones: both the multiple

interference pattern and the observed resonances are well accounted for by calculations. Notice that

the intensity and shape of the structures change markedly with angle, showing a variety of maxima,

minima and dispersive-like line-shapes. However, they remain relatively narrow and well defined

even for high θ values, exhibiting a FWHM of the order of 10−2eV. While the amplitude of the

resonances is related to the coupling strength to guided modes, their width is mainly determined

by radiative and dissipative losses, which are expected to be low for patterned waveguides with a

low air fraction [Benisty, H., et al. (2000); Kawai, N., et al. (2001)]. In fact, despite some sur-

face inhomogeneity possibly coming from the etching process, the observation of relatively narrow

features can be considered as an indication of good guiding properties. This suggests that samples

with low air fraction may be useful for achieving low-loss propagation, although the relatively weak

coupling strength imposes stringent matching-conditions for the excitation of quasi-guided modes.

As already pointed out, the dispersion of photonic bands that lie above the light line can be

conveniently extracted from the energy position of the resonances versus the in-plane wave-vector

k that spans the Brillouin zone upon varying the angle θ. Since most structures in reflectance

spectra exhibit a dispersive-like shape, the inflection point is chosen as the energy position for the

propagating mode. This analysis is reported in Fig. 2.17, where measured bands (left panel) are
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Figure 2.17 Experimental (left panel) and calculated (right panel) photonic
modes for different polarizations with respect to the plane of
incidence: TE (blue), TM (red). The dotted lines represent
the dispersion of light in air, in the core and cladding.

compared with the calculated ones (right panel). Photonic bands are separated in TE and TM

modes, according to parity with respect to the plane of incidence k− z. The frequency dispersion

of the dielectric functions of GaAs and AlGaAs are taken into account in an approximate way by

calculating each group of nearby bands with ε(ω) chosen at an average frequency. Dotted lines

represent the dispersion of photons in GaAs, AlGaAs and in air.

Most of the calculated bands in the investigated range can be identified in the experimental spectra,

and a rather good agreement for dispersion and energy values is obtained both for TM and TE

modes. Particularly, an anti-crossing of two bands can be clearly observed around 0.9eV, in the

experimental and calculated spectra along the Γ − M direction. Notice that TE and TM bands

have very similar dispersion both along the Γ−M and Γ−X directions, and exhibit rather small

energy gaps at the high symmetry points of the Brillouin zone. Actually, due to the quite low

air fraction, the system is very close to the ideal empty lattice or free photon case, where light

propagation would be simply governed by an unpatterned slab with the average refractive index

[Ochiai, T., et al. B (2001)].
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The Sample RUN3

Figure 2.18 Sample RUN3: unit cell (left) and SEM image (right). Cour-
tesy of Romanato, F. et al., NNL - INFM, Italy.

Fig. 2.18 shows a SEM image of the sample RUN3 and a sketch of its unit cell. This time, the

two-dimensional pattern results in a chessboard lattice of dielectric rods in air, whose dielectric

function Fourier transform is given by Eq. (2.22), where b is taken to be
√

2l, with l = 0.53a. The

VAR spectra (experimental and calculated) are shown in Fig. 2.19 for TE polarized light incident

along the Γ−X directions. Similar results are obtained for light incident along the Γ−M orientation

and for TM polarization (not shown here). Again, the angle of incidence θ is varied from 5◦ to 60◦

in steps of 5◦ and the curves are vertically shifted for clarity.

As can be noticed, interference fringes from the waveguide structure still characterize the reflectance

spectra. The period of the interference is now much longer, due to the considerably higher air

fraction and correspondingly lower effective index. The interference pattern is again a complex

superposition of core and core + cladding contributions and is well reproduced by theory with an

etch depth of 0.95µm. The layer thicknesses are taken from the same ellipsometry values found for

the sample L2. A large air fraction causes also that the angular dependent resonant structures are

considerably broader than in sample L2. As mentioned before, broader resonances imply a larger

coupling to leaky waveguide modes and, therefore, an increase of out-of-plane diffraction losses.

Good agreement is found between calculated and experimental curves, even though in this case the
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Figure 2.19 Experimental (a) and calculated (b) variable angle reflectance
for TE polarized light incident along the Γ−X direction. The
angle of incidence is varied in steps of 5◦. The different curves
are vertically shifted for clarity. Experimental data courtesy
of Galli, M., Università degli Studi di Pavia, Italy.

calculated resonances appear to be slightly sharper than the experimental ones. This is probably

due to some disorder effect in the sample.

The photonic bands of the sample RUN3 are reported in Fig. 2.20, where experimental bands

(left panel) are compared to the calculated ones (right panel). The criteria adopted for the analysis

of the experimental spectra and the methods of calculation are the same as for sample L2. The

overall situation is rather different, compared to the results obtained for sample L2. The whole

band diagram is shifted to higher energies, and TE and TM bands are now well separated and

show a fairly dissimilar dispersion: both features follow from the large air fraction. Notice that

truly guided modes exists for both TE and TM polarizations. However, as results from the band

diagrams, the lowest bands in the guided mode region have a finite cut-off wavelength imposed by

the thickness of the asymmetric waveguide. The guided modes go over smoothly into the radiative

region, when crossing the light line, and should be viewed as quasi-guided modes thereafter. The
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Figure 2.20 Experimental (left panel) and calculated (right panel) photonic
modes for different polarizations with respect to the plane of
incidence: TE (blue), TM (red). The dotted lines represent
the dispersion of light in air, in the core and cladding.

first order waveguide mode folded in the radiative region has gaps at the center zone and edge.

Since the waveguide is asymmetric, there is no parity distinction between first and second-order

modes and their energy dispersions anti-cross with very small gaps. Good overall agreement if found

between the bands extracted from reflectance and the calculated ones. It is remarkable that a gap

around 1.2eV opens for both polarizations over most of the Brillouin zone: the gap is large close to

Γ and closes only very near to the zone boundary. The photonic density of states is expected to be

very low in the energy region 1.15-1.25eV, which can be called a pseudo-gap. Linear defects in the

two-dimensional lattice would act as channel waveguides and would support propagating modes in

this pseudo-gap.

In summary, the sample L2, with a basis of air rings and an air fraction of 12%, exhibits nar-

row resonant structures, indicating good guiding properties for the photonic quasi-guided modes.

All qualitative features of reflectance and photonic bands are well reproduced by theory, including

anti-crossings of the states along the Γ−M direction. The dispersion of photonic modes is similar
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for TE and TM polarizations and is close to that of free photons in an effective waveguide. The

sample RUN3, with a basis of tilted dielectric squares and an air fraction of 72%, shows broader

spectra features, related to the higher radiative width and diffraction losses of quasi-guided modes.

The photonic dispersion of photonic modes is strongly different for the two polarizations and a

pseudo-gap occurs around 1.2eV, where the photonic density of states is expected to be very low.

The VAR spectra of the air bridge system and of the GaAs/AlGaAs patterned heterostructure

exhibit sharp features that correspond to the excitation of quasi-guided modes in the waveguide

structure. The spectra are calculated using a scattering matrix approach, which allows an exact

solution of Maxwell’s equation, apart a wave-vector cut-off. The photonic bands can be thus

extracted from reflectance curves and compared to the ones calculated with the method based on

the expansion on waveguide modes. Good agreement is found between the two methods, and also

with experimental data. This shows that the photonic band picture is valid also above the light

line, where a continuous spectrum is arranged in guided resonances or quasi-guided modes, and

that the VAR is adequate for measuring the photonic band structure. The present study is also a

test of the expansion method implemented for calculating the photon dispersion in photonic-crystal

slabs, whose approximation consists of neglecting coupling to leaky modes: the method is found to

be reliable for obtaining the band structure of both strong and weak index confinement structures.

The coupling of the external field to quasi-guided modes obeys to selection rules that can be inferred

from a symmetry analysis of the two-dimensional pattern: the incident plane wave must have the

same symmetry of the quasi-guided mode, besides matching ω and k, in order to have coupling.

When the VAR is calculated along the symmetry lines of the Brillouin zone, the plane of incidence

represents a mirror plane for the crystal: using TE (TM) polarized light, one probes the states

that are odd (even) with respect to the plane of incidence. The symmetry brought by the vertical

profile of the planar waveguide does not influence the selection rules for the VAR. Nevertheless, a

symmetric structure with respect to the waveguide plane exhibits band crossings [Fig. 2.11], while

an asymmetric structure shows band anti-crossings [Figs. 2.16 and 2.17].

The VAR spectra obtained for the samples L2 and RUN3 show that the system with a larger air

fraction is characterized by broader resonances. Such trend is in agreement with the phenomenolog-
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ical model developed by Benisty, H., et al. (2000) and with the exact numerical result that broad

resonances correspond to large propagation losses and vice versa [Ochiai, T., et al. A (2001)].

That is why the sample L2 is expected to have better guiding properties than the sample RUN3.

Since the determination of out-of-plane losses is fundamental for designing photonic-crystal slabs,

one would use the VAR technique to infer such information, at least qualitatively, by looking at the

width of the resonances. The purpose is to complete the comparison between high- and low-index

confinement structures, which started in Sec. 1.4.3 about the photonic band structure, and, more

generally, to understand the dependence of out-of-plane losses on various structure parameters. The

assessment of propagation losses will help in finding which are the main guidelines for designing an

efficient photonic-band-gap material.

2.5 Out-of-Plane Losses

The SMM is here exploited to provide some trends of out-of-plane losses as a function of various

structure parameters. The systems under study are once again the air bridge and the GaAs-based

photonic crystals. For simplicity, frequency and incidence angles are tuned to match a photonic

mode that is rather distant from the other resonances. The idea is to isolate a well defined resonance

that exhibits a clear dispersive line shape, and concentrate only on this one. It is clear that such

approach is by no means complete, because it focusses on a single mode at a single Bloch vector,

but it is already sufficient to give a flavor of what are the dependencies on the dielectric contrast,

the core thickness, the hole radius and, finally, the etch depth. In fact, out-of-plane losses depend

both on the Bloch vector and on the band index [Ochiai, T., et al. A (2001); Lončar, M., et

al. (2002)]. However, it is given for granted that the following trends are qualitatively correct, as

long as they track the evolution of the same state.

Consider the air bridge system studied in Sec. 1.4.3 for core thickness d = 0.3a and focus the

attention on the band around a/λ ' 0.4 along Γ−K, which is optically active to a TM-polarized

probe, see Fig. 2.11. This is the quasi-guided mode chosen to represent out-of-plane losses in a

strong confinement photonic-crystal slab. As to the weak confinement system, consider a GaAs-

based photonic crystal with the following structure: AlGaAs (ε = 11 and layer thickness d = 0.5a),
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Figure 2.21 TM-polarized reflectance for a GaAs-based photonic crys-
tal and a patterned air bridge. Both the air bridge and
the GaAs/AlGaAs heterostructure are patterned with a tri-
angular lattice of air holes, with r = 0.24a. Air bridge:
air (semi-infinite), patterned core (ε = 12, d = 0.3a, 0.9a),
air (semi-infinite). GaAs/AlGaAs heterostructure: air
(semi-infinite), patterned AlGaAs (ε = 11, d = 0.5a), pat-
terned GaAs (ε = 12, d = 0.3a, 0.9a), patterned AlGaAs
(ε = 11, semi-infinite). Incident wave: θ = 50◦, φ = 0◦

and TM-polarized. For clarity, the curve corresponding to the
0.9a-thick GaAs has been shifted upwards by 0.2.

GaAs (ε = 12 and d = 0.3a) and AlGaAs (semi-infinite) as substrate. All layers are patterned with

a triangular lattice of air holes, whose radius is r = 0.24a, like for the air bridge. Also for this

case, the quasi-guided mode that represents out-of-plane losses is a state close to a/λ ' 0.43 along

Γ−K, which couples to TM-polarized waves, see Fig. 1.12a3. Both modes, for the air bridge and

the GaAs/AlGaAs, are sampled by TM-polarized light with incidence angles θ = 50◦ and φ = 0◦.

The calculations are always performed using 109 plane waves.

Fig. 2.21 shows the respective dispersive line shapes associated to the above modes. First of all,

3It is the band (solid line) along Γ−K with negative dispersion, around ωa/2πc ' 0.4. Notice that, in the present
system, the bands are slightly blue-shifted, because the outmost top cladding is air, instead of being AlGaAs.
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the amplitude of the resonances relative to the air bridge is larger than for the GaAs/AlGaAs

system: this has to do with a different coupling strength to external radiation. As regards the

width of the resonances, the one belonging to the GaAs/AlGaAs photonic crystal is roughly one

order of magnitude smaller than the one shown by the air bridge; thus one is led to conclude that

propagation losses are ten times smaller in weak confinement photonic crystals.

When the core thickness is increased to d = 0.9a, the width of the resonances diminishes for both

systems. However, while for the GaAs/AlGaAs patterned waveguide the energy position of the

quasi-guided mode does not depend much on the core thickness, for the air bridge, the blue-shift

is considerably reduced.

2.5.1 Vertical Confinement Effects

For a deeper insight on vertical confinement effects, the above weak- and strong-confinement

photonic-crystal slabs are now studied for different core thicknesses d/a; all the other parameters

are left unchanged. Fig. 2.22 displays the evolution of the resonances as a function of d/a, for the air

bridge (top) and for the GaAs/AlGaAs heterostructure (bottom). As already noticed in Fig. 2.21,

the width of the resonances gets narrower, as d/a increases, and the blue-shift is also reduced:

∆(a/λ) ' 0.06 for the air bridge and ∆(a/λ) ' 0.008 over the same d/a range. Moreover, the

amplitude of the resonances is always much smaller in the weak-confinement case (notice that the

reflectance curves are vertically shifted by 1.0 for the air bridge and by 0.1 for the GaAs/AlGaAs

waveguide, so that they appear deceptively similar). Though out-of-plane losses may diminish to a

“reasonable” value, the air bridge cannot be too thick, because the onset of higher-order waveguide

modes will close the photonic band gap [Johnson, S. G., et al. (1999); Andreani, L. C. (2002)],

disrupting the guiding properties of linear defects and precluding any further application. On the

contrary, it is more convenient to work with relatively thick weak-confinement structures: out-of-

plane losses are smaller than for thin cores, the modes are closer the the ideal two-dimensional

case and higher-order waveguide modes occur at higher frequencies, well above the first band gap.

Furthermore, the small dielectric contrast provides a good tolerance of the photonic band structure

with respect to the layer thicknesses. Nevertheless, the other alternative would be to use the truly

guided modes of a thin air bridge system. However, the presence of any defect that breaks the
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Figure 2.22 TM-polarized reflectance as a function of the core thickness
d/a for the air bridge and the GaAs/AlGaAs heterostructure
described in the caption of Fig. 2.21: (top panel) air bridge,
(bottom panel) GaAs/AlGaAs. For clarity, the curves for
the air bridge are vertically shifted by 1.0 and those for the
GaAs/AlGaAs waveguide by 0.1. Incident wave: θ = 50◦,
φ = 0◦ and TM-polarized.
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Figure 2.23 TM-polarized reflectance as a function of the hole radius r/a

for the GaAs/AlGaAs heterostructure described in the cap-
tion of Fig. 2.21, where the GaAs core layer has now thick-
ness d = 0.9a. For clarity, the reflectance curves are verti-
cally shifted by 0.1. Incident wave: θ = 50◦, φ = 0◦ and
TM-polarized.

translational symmetry (bends, resonant cavities, etc.), will cause much larger losses than the same

defect embedded in a weak-confinement waveguide, in accordance to what is found for the quasi-

guided modes of Fig. 2.21. Since defects are necessary elements of a photonic-crystal integrated

circuit, these results suggest that it is more advantageous to employ the quasi-guided modes of

thick weak-confinement waveguides rather than the guided modes of a thin air bridge or similar

strong-confinement structures.

2.5.2 Dependence on the Filling Factor

The above considerations lead to choose a GaAs-based photonic-crystal slab with core thickness

d = 0.9a. However, for r = 0.24a, such system exhibits an H-like band gap4 that is a little too

narrow to be suitable for applications. This can be easily overcome by increasing the hole radius
4In fact, the small waveguide asymmetry guarantees that the distinction into E-like and H-like modes is a good

approximation.
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to obtain a larger band gap, as shown in Fig. 1.14c. However, as suggested by Benisty, H., et

al. (2000), out-of-plane losses increase with the filling ratio, so that one has to find a compromise

between having a larger band gap and larger out-of-plane losses.

Fig. 2.23 shows the dependence of the resonance with respect to the hole radius, from r = 0.20a

to r = 0.36a. Indeed, the width found for r = 0.36a is much larger than the one corresponding to

r = 0.20a and the same holds for out-of-plane losses. By looking at Fig. 2.23 and Fig. 1.14c, the

best trade-off seems to occur for a hole radius within the range of 0.28a−0.32a, which corresponds

to a filling ration of ∼ 30% -35%.

2.5.3 Dependence on the Etch Depth

Although these parameters are optimal in theory, in practice one has to face the issue of having

a finite etch depth for the air holes. The etch depth depends on the materials (GaAs, AlGaAs,

InP, Si) and on their respective etching techniques. Moreover, the etch depth depends also on

the hole radius: the etching process is indeed more demanding for small radii. That is why it is

interesting to see how out-of-plane losses vary with the etch depth [Benisty, H., et al. A (2002)].

In this case, the GaAs/AlGaAs waveguide is patterned with air holes having radius r = 0.32a.

The top AlGaAs cladding (d = 0.5a) and the GaAs core (d = 0.9a) are completely etched, while

the AlGaAs substrate is etched up to a depth between 0.5a and 3.0a. The results are shown in

Fig. 2.24. From the reflectance curves, it is apparent that the energy position of the resonances

does not depend on the etch depth. This is good news, since some tolerance is allowed in the

etch depth, without effects on the photonic band structure. However, as the etch depth goes from

infinity to 0.5a, the corresponding resonances get broadened. Following the trend, it is found

that the width of the resonances reaches the intrinsic value (represented by infinite etch depth),

when the etch depth is larger than a critical value hc ∼ 3.0a. This is because, as the etch depth

increases, the guiding properties of the heterostructure approach those of the intrinsic case; i.e. the

critical etch depth hc corresponds to a point, where the vertical profile of the quasi-guided mode

is negligibly different from the intrinsic case. In practice, for a lattice constant a = 400nm, the

total etch depth as to be 0.5a + 0.9a + 3.0a = 4.4a ⇒ hc = 1760nm, while for a = 500nm the

value is hc = 2200nm. Such depths are already attainable for GaAs-based photonic crystals, by
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Figure 2.24 TM-polarized reflectance as a function of the etch depth h/a

for a GaAs/AlGaAs heterostructure: air (semi-infinite), pat-
terned AlGaAs (ε = 11, d = 0.5a), patterend GaAs (ε = 12,
d = 0.9a), patterned AlGaAs (ε = 11, h/a = 0.5 − ∞) and
AlGaAs substrate (ε = 11, semi-infinite). All patterned lay-
ers have air holes with radius r = 0.32a. For clarity, the re-
flectance curves are vertically shifted by 0.09. Incident wave:
θ = 50◦, φ = 0◦ and TM-polarized.

means of state of the art technology. However, this is not the case for any heterostructure, where

material-related technological issues might make this goal more challenging, besides considering

that the critical etch depth depends on several structure parameters, like the hole radius, the layer

thicknesses and the dielectric contrast, for instance.

In conclusion, weak-confinement photonic-crystal slabs exhibit low propagation losses for rela-

tively thick cores, small air filling ratios and sufficient etch depth. If these conditions are fulfilled,

these systems can be promising candidates for the realization of photonic-crystal integrated circuits.
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CHAPTER 3. WAVE PROPAGATION

After studying the photonic band structure and the optical properties of semiconductor-based

two-dimensional photonic crystals, the discussion moves to wave propagation. Wave propagation

concerns the in-plane transmission properties of bulk two-dimensional photonic crystals, linear

defects and more complex structures. The subject is, of course, of great interest for technological

applications. That is why the work is intended to start from simple systems and, step by step,

to build up a photonic-crystal device, namely a combiner for an integrated multi-wavelength laser

source. This result is part of the European Union Information Societies Technology program,

called Photonic Crystal Integrated Circuits (PCIC), and has been developed in collaboration within

the research consortium. Such example is just one of the possible applications and, actually, it

can be still considered a building block, rather than a photonic-crystal device. Nevertheless, it

already possesses a degree of complexity that allows to gather a collection of important concepts,

which are with wave propagation. The PCIC consortium has chosen to work with weak index

confinement two-dimensional photonic-crystal slabs, in particular GaAs and InP systems. The

AlGaAs/GaAs/AlGaAs configuration has been used as a reference, thanks to the expertise reached

in its fabrication and characterization. Instead, the InP/GaInAsP/InP system has been aimed to

be the novel structure for fabrication of photonic-crystal devices, operating at 1.5µm.

From the point of view of theory, the purpose is to make use of modelling tools for designing

the desired functionality, be a waveguide, a resonant cavity or a more complex structure. The

Finite-Difference Time-Domain (FDTD) method appears to be the proper one, for its flexibility in

treating almost any photonic-crystal geometry.

As already mentioned, photonic crystals based on low-index-contrast planar waveguides do not

support truly guided modes, but resonances, which imply propagation losses. This issues, plus

other important ones like bending of light, modal mixing and mono-mode transmission, will be
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discussed inside this chapter and possible solutions will be proposed.

The discussion begins with an historical overview of the subject, with emphasis on low-index-

contrast systems. Then, the two-dimensional FDTD method is explained in detail, with the neces-

sary implementations and extensions for calculating transmission spectra of two-dimensional pho-

tonic crystals, including propagation losses. Section 3.3 introduces InP-based two-dimensional

photonic-crystal slabs, with mention to the fabrication method. The two-dimensional FDTD is

compared against the full three-dimensional FDTD method, as a valid approximation for mod-

elling weak-confinement systems; the test is performed on bulk photonic crystals. With Section 3.4

the attention moves to wave propagation in linear defects, translating the general concepts of dis-

persion relation and of mini-stop band, seen in Sec.1.5, into transmission spectra. Section 3.5 deals

with one of the main arguments of this chapter: bends in linear defects. The difference between

single-mode (W1) and multi-mode waveguide (W3) is shown, putting in evidence advantages and

issues of both cases. Several bend designs are proposed for the W3 waveguide. The objective is to

obtain mono-mode transmission in the fundamental guided mode. Comparison with experimental

data is also shown. The last section is dedicated to more complicated structures, namely splitters

and combiners. The discussion is oriented towards the demonstration of a low-cross-talk combiner

for a multi-wavelength-source laser.

3.1 History

As discussed in the last part of Sec. 1.1, besides the intense research on the photonic band

structure of bulk photonic crystals, a parallel activity was devoted to the investigation of the defect

states created by appropriate design of the dielectric pattern. Such efforts were oriented towards

the realization of active and passive components for photonic-crystal integrated circuits, like waveg-

uides, resonators, add/drop filters, lasers and other optical devices. These ideas were founded on

the existence of the photonic band gap: by tuning and tailoring defect states within the band gap

domain, one wishes to achieve the desired functionality. However, between the proposal by Meade,

R. D., et al. (1994) of using two-dimensional photonic-crystal slabs to attain a complete control of

light and designing non-conventional waveguides and high-Q-factor resonators, and the availability
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of appropriate samples [Krauss T. F., et al. (1996)], most of the advancement was necessarily in

theory, or in experiments performed in the microwave frequency domain [J. Opt. Soc. Am. B, 10

(2); Joannopoulos, J. D., et al. (1995)]. However, later on, much work was successfully conducted

also for what concerns the fabrication and characterization of photonic-crystals-based components

operating at infrared and optical wavelengths.

As regards the area of micro-cavities, Villeneuve, P. R., et al. (1996) theoretically investigated the

properties of resonant modes in two- and three-dimensional photonic crystals. They showed how

such properties can be controlled by defect engineering. In this context, Foresi, J. S., et al. (1997)

were the first ones to report on the fabrication and characterization of a photonic-crystal micro-

resonator operating at the telecommunication wavelength (1.55µm). The structure was obtained

by etching the desired pattern in a silicon-on-insulator waveguide. Though the Q-factor was only

265, the tiny modal volume (0.0455µm3) was very promising for achieving a high degree of integra-

tion. Subsequently, Painter, O., et al. A (1999) published a numerical study of defect modes of

two-dimensional photonic-crystals based on a self-standing dielectric membrane. They calculated a

Q-factor of 20,000, whose increase was limited by radiative losses in the vertical direction. The same

system was experimentally studied by Pottier, P., et al. (1999), who found Q-factors up to 900,

but for larger cavities than those considered by Painter, O., et al. A (1999). Similar experiments

were conducted by Benisty, H., et al. (1999) on GaAs-based photonic-crystal slabs. It is worth

to mention that there are also studies related to macro-porous silicon photonic-crystals: Kramper,

P., et al. (2001) performed direct spectroscopy of a deep two-dimensional photonic-crystal micro-

resonator identifying two resonances with Q-factors of 640 and 190. Although these values are not

very high, the extremely small mode areas result in generalized finesse comparable with the mi-

crodisk and the micropillars, respectively. Such high finesse were also achieved in photonic-crystal

slabs [Painter, O., et al. B (1999)].

Besides micro-resonators, another important element for photonic-integrated circuits is the waveg-

uide. Photonic crystals appeared particularly attracting thanks to the possibility of guiding light

through sharp bends without losses, contrary to what happens for dielectric waveguides, and for

the possibility of on-chip integration. Mekis, A., et al. (1996) numerically demonstrated that 90◦

sharp bends, designed in a square lattice of dielectric pillars, can have very efficient transmission.
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The same structure was experimentally assessed by Lin, S.-Y., et al. B (1998) in the micro-wave

regime: they indeed found that nearly 100% of light goes though the bend. However, the chal-

lenge was to obtain the same nice results for micron-size photonic-crystals. Before working on

bent waveguides, wave propagation was studied in straight waveguides: Baba, T., et al. (1999) for

silicon-on-insulator, Benisty, H., et al. (1999) and Talneau, A., et al. (2001) for GaAs/AlGAs,

and Chow, E., et al. (2000) for GaAs/Alox-based photonic crystals. As already mentioned, these

studies led to the discovery of mini-gaps in the waveguide transmission spectrum [Mekis, A., et

al. (1998); Olivier, S., et al. A (2001)], the so-called mini-stop band. As far as bent waveguides

are concerned, Tokushima, M., et al. (2000) measured high transmission through a 120◦ sharp

bends in single-defect waveguides, designed in triangular-lattice photonic crystals based on silicon-

on-insulator planar waveguides. Also, Lončar, M., et al. A (2000) reported on 60◦ bends in single-

defect waveguides created in etched silicon-on-insulator heterostructures. Chow, E., et al. (2001)

attained very high efficiency in 60◦ bends for single-defect waveguides made in GaAs/Alox-based

photonic crystals with a triangular lattice of air holes. Similar results were theoretically predicted

by Chutinan, A., et al. (2000, 2002) for the same designs applied to air bridge systems. However,

all these cases regard bends created in single-mode waveguides (the W1 waveguide). Since wider

waveguides may yield lower propagation losses, particular attention was put on waveguides made

by removing more than one row of holes (WN waveguides). The price to pay was the loss of

single-mode transmission. Indeed, even two-row removed waveguides are unavoidably multi-mode.

Moosburger, J., et al. (2001); Talneau, A., et al. A (2002) showed improved transmission in W3

waveguides by smoothing 60◦ bends adding Γ −M sections to the bend corner. Olivier, S., et al.

B (2001) investigated the idea of using coupled resonators to guide light through sharp bends.

However, such designs did not guarantee single-mode transmission, which is a fundamental feature

for cascading elements. Very recently, Talneau, A., et al. B (2002) proposed a novel bend design

based on the concept of adiabatic taper [Lalanne, Ph., et al. (2002)]. The idea is to taper a W3

waveguide to a W1 waveguide in the very proximity of the bend, so that single-mode transmission

is guaranteed by the narrow channel itself.

Another important element for photonic-crystal integrated circuits is the so-called channel drop

filter. The theory and the demonstration of the feasibility of photonic-crystal add/drop filter was
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made by Fan, S., et al. (1998). However, due its extreme sensitivity to losses, such device has yet

to be experimentally tested. Lastly, the passive elements have to be completed by active elements

like photonic-crystal lasers for instance. They are interesting because they can be integrated in a

photonic-crystal chip and they may exhibit low threshold current and low power consumption. All

of that is state-of-the-art research [Painter, O., et al. B (1999); Happ, T., et al. (2002); Ryu, H.-Y.,

et al. (2002); Shkunov, M. N., et al. (2002); Cao, J. R., et al. (2002); Imada, M., et al. (2002)].

3.2 The Finite-Difference Time-Domain Method

Calculating the transmission properties of photonic crystals is, essentially, the problem of solving

Maxwell’s equations for finite systems with a periodic dielectric function. The classical transfer

matrix method [Pendry, J. B., et al. (1992)] allows to obtain several transfer functions for simple

structures, like bulk photonic crystals or linear defects, but it is not easily applicable to more

complicated geometries, like sharp bends, combiners, channel-drop filters and other multi-port

devices. The Finite-Difference Time-Domain (FDTD) method [Tavlove, A. (1995)], instead, is

much more flexible as regards the geometry of the system that has to be modelled. This is because

while the transfer matrix method expands the electromagnetic field on plane waves, the FDTD

method works in direct space on the full fields, defined on a space-time mesh.

The FDTD method dates back to the work of Yee, K. S. (1966), who proposed an algorithm for

solving the time-dependent Maxwell’s curl equations, which transforms the differential operators

in finite differences in space and time. The method has been extensively used mainly in electrical

engineering, in antenna’s design and in radar science, also for military defense projects, like for

the radar-invisible aircraft fighters (radar cross section mitigation). With the advent of photonic

crystals, the FDTD method has been found also a powerful technique for studying and designing

building blocks for photonic integrated circuits.

3.2.1 Basic Ideas

To introduce the Yee algorithm, consider first the derivative of a one-variable function f(x),

df(x)
dx

= f ′(x) = lim
h→0+

f(x + h)− f(x)
h

. (3.1)
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Recalling that the value of f(x + h) can be obtained from Taylor expansion of f(x), f ′(x) is

approximated by the following second-order accurate central difference,

f ′(x) =
f(x + h)− f(x− h)

2h
+ O[h2] . (3.2)

Eq. (3.2) represents the classical technique used in numerical analysis for calculating the first

derivative of a function. The Yee algorithm is a little bit more sofisticate, because it works with

Maxwell’s curl equations. Since the systems under investigation are two-dimensional photonic

crystals, the discussion is limited to the two-dimensional FDTD method. For the implementation

of the one- and three-dimensional FDTD methods, please refer to Tavlove, A. (1995).

Thus, consider a two-dimensional system and focus the attention on Maxwell’s curl equations

∇×H(x, t)− 1
c

∂

∂t
ε(x)E(x, t) = 0 , ∇×E(x, t) +

1
c

∂

∂t
H(x, t) = 0 , (3.3)

with x = (x, y) and the fields H-polarized. Before proceeding, it is convenient to define the

following notation for the finite differences. The two-dimensional space is defined on a discrete

uniform rectangular mesh x− y. Likewise, time is discretized by division in uniform intervals ∆t.

Denote a space point in the mesh as

(i, j) = (i∆x, j∆y) , (3.4)

where ∆x and ∆y are, respectively, the lattice space increments in the x and y coordinate directions,

and i, j are integers. Further, denote any function f of space and time evaluated at a discrete point

in the grid and at a discrete point in time as

f(i∆x, j∆y, n∆t) = f |ni,j . (3.5)

Yee made use of central differences for obtaining the finite-difference version of Eq. (3.3). Consider

the application of Eq. (3.2) for the evaluation of the first partial space derivative of f in the x

direction, at the fixed time tn = n∆t:

∂f

∂x
(i∆x, j∆y, n∆t) =

f |ni+1/2,j − f |ni−1/2,j

∆x
+ O[(∆x)2] , (3.6)

where the ±1/2 increment in the i subscript of f represents a space finite-difference over ±1/2∆x.

Eq. (3.6) is second-order accurate like Eq. (3.2), but it is apparent that the data used for central
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Figure 3.1 Positions of the H-polarized field components for the cen-
tral-difference derivatives. Each field component is de-
fined on a uniform rectangular mesh with displacements
∆x and ∆y. Each mesh is shifted by ∆x/2 or ∆y/2
from the others so that if Hz is positioned at the lattice
points (i, i ± 1, . . . , i ± m; j, j ± 1, . . . , j ± n), Ex will be at
(i, i ± 1, . . . , i ± m; j + 1/2, j + 1/2 ± 1, . . . , j + 1/2 ± n) and
Ey at (i + 1/2, i + 1/2± 1, . . . , i + 1/2±m; j, j ± 1, . . . , j ± n).

differencing are taken to the right and left of the observation point i, j by only ∆x/2, rather than

a full ∆x. Yee chose this notation because he wished to interleave the E and H components

in the space lattice at intervals of ∆x/2, as shown in Fig. 3.1. Eq. (3.6) provides a numerical

approximation of ∂Ey(x, t)/∂x at the grid point i, j and at the time coordinate n. In analogy

to Eq. (3.6), the other partial derivative ∂f |ni,j/∂y can be written simply by incrementing the j

subscript of f by ±1/2∆y. A similar expression holds for the partial time derivative, evaluated at

the grid point i, j

∂f

∂t
(i∆x, j∆y, n∆t) =

f |n+1/2
i,j − f |n−1/2

i,j

∆t
+ O[(∆t)2] , (3.7)

where now the finite-difference is over ±1/2∆t. The notation is chosen again to interleave the E and

H components in time at intervals ±1/2∆t for implementing the so-called “leapfrog” algorithm.
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3.2.2 Finite-Difference Expressions for Maxwell’s curl equations

The above ideas can be now applied to achieve a numerical approximation of Eq. (3.3). Choose

for instance H -modes. By means of Eqs. (3.6) and (3.7), Ampere’s law is rewritten as

1
c
εi,j+1/2

Ex|n+1/2
i,j+1/2 − Ex|n−1/2

i,j+1/2

∆t
=

Hz|ni,j+1 −Hz|ni,j
∆y

, (3.8a)

1
c
εi+1/2,j

Ey|n+1/2
i+1/2,j −Ey|n−1/2

i+1/2,j

∆t
=− Hz|ni+1,j −Hz|ni,j

∆x
, (3.8b)

with εi,j = ε(i∆x, j∆y) is the position-dependent dielectric function. In the same manner, Faraday’s

law reads

−1
c

Hz|n+1
i,j −Hz|ni,j

∆t
=


Ey|n+1/2

i+1/2,j −Ey|n+1/2
i−1/2,j

∆x
−

Ex|n+1/2
i,j+1/2 −Ex|n+1/2

i,j−1/2

∆y


 . (3.8c)

Focussing on Eq. (3.8a), note that all field quantities on the right-hand side are evaluated at time

step n, while on the left-hand side, the electric field components are evaluated at time step n±1/2,

as imposed by the leapfrog algorithm. Assuming that the values of the field components for n and

n − 1/2 are stored in the computer memory, the only unknown remains Ex|n+1/2
i,j+1/2. Rearranging

Eq. (3.8a), so that the term Ex|n+1/2
i,j+1/2 is isolated on the left-hand side, yields

Ex|n+1/2
i,j+1/2 = Ex|n−1/2

i,j+1/2 +
c∆t

εi,j+1/2∆y

(
Hz|ni,j+1 −Hz|ni,j

)
. (3.9a)

In a similar manner, finite-difference expressions are derived for the remaining equations

Ey|n+1/2
i+1/2,j = Ey|n−1/2

i+1/2,j −
c∆t

εi+1/2,j∆x

(
Hz|ni+1,j −Hz|ni,j

)
, (3.9b)

Hz|n+1
i,j = Hz|ni,j −

c∆t

∆x

(
Ey|n+1/2

i+1/2,j −Ey|n+1/2
i−1/2,j

)
+

c∆t

∆y

(
Ex|n+1/2

i,j+1/2 −Ex|n+1/2
i,j−1/2

)
. (3.9c)

After initializing the fields H and E at the time steps 0 and 1/2, respectively, a loop over Eqs. (3.9a),

(3.9b) and (3.9c) allows to update the field until the desired time step. For each time step, an-

other loop has to be performed over the points i, j to update the fields on the grid. In practice,

two nested loops simulate the space-time evolution of the electromagnetic field in any dielectric

medium defined by εi,j . The computer has to store only the field values on the grid i, j on a defined

time step and the position-dependent dielectric function εi,j ; at each time step, the updated field

values replace the old ones and so on.
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Concerning the Maxwell divergence equations, it can be demonstrated that the Yee grid and algo-

rithm enforce the Gauss law relations for the electric and magnetic fields.

Based on the Yee algorithm, the FDTD method seems to be a simple and efficient technique for

solving Maxwell’s equations. However, there are some important issues and details that must be

carefully considered for successful modelling, namely: stability and numerical dispersion, boundary

conditions at the grid’s edges, simulation of incident pulses, detection of the transmitted field.

Numerical stability and dispersion is too much technical for discussion in this context. Here, it is

enough to say that the two-dimensional algorithm is stable if

∆t ≤ 1

c

√
1

(∆x)2
+

1
(∆y)2

. (3.10)

If the above condition is not fulfilled, the field values will exponentially diverge as time increases.

The loop over the grid points must be finite for two reasons: storing the field values over an infinite

number of points would require infinite computer memory, a do loop over infinite lattice points

would require infinite CPU time. Assuming that the grid begins at i = 1, j = 1 and terminates at

i = M, j = N , the field components at (1, j), (i, 1) and (M, j), (i,N) cannot be updated, because

the required field components at (1/2, j), (i, 1/2) and (M+1/2, j), (i, N+1/2) are not available. On

the other hand, one wants a boundary condition that permits reflection-less outward-propagating

numerical waves, almost as if the simulation were performed on a computational domain of infinite

extent. In the process, the outer boundary condition must suppress spurious reflections of the

outgoing waves to an acceptable level, permitting the FDTD solution to remain valid for all time

steps. In the present work, the FDTD code implements Liao absorbing boundary conditions [Liao,

Z. P., et al. (1984)], where the marginal field values are obtained by extrapolation of the field

values over a stencil of internal grid points. The method is based on a Newton backward-difference

polynomial. Alternatively, if the system is homogenous or periodic in one direction, Bloch boundary

conditions can be used in place of Liao’s.

Fig. 3.2 shows the computational domain for a finite two-dimensional photonic crystal. The

host material is equal to the dielectric medium of the photonic crystal. The modelled structure is

surrounded by a buffer of homogenous dielectric, along the direction where transmission has to be
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Figure 3.2 FDTD simulation of a simple crystal along the Γ − M direc-
tion. A plane wave is launched from the left (arrow) and it
is collected by a line detector (D) after the photonic crystal.
The black-thick edges truncate the computational mesh using
Liao absorbing boundary conditions. The other edges use Bloch
boundary conditions.

calculated, in this case the Γ −M lattice direction. Since the system is finite along Γ −M , Liao

boundary conditions must be used for terminating the two buffers, before and after the photonic

crystal. In the Γ − K direction, instead, the system is infinitely extended and Bloch boundary

conditions can be used.

In order to calculate the transmission, the FDTD method has to implement an incident wave

launched from one side of the structure and collect the power at the other side. There are several

methods to include a source in the Yee algorithm. For bulk photonic crystals, like the one of

Fig. 3.2, a plane wave is chosen as incident source. The source profile is obtained by aligning a

set of oscillating dipoles along the desired wave-front. For propagation along the x direction, the

dipoles are written as

Hz|ni◦,j(s) = H◦ cos(ω◦n∆t)e−
σ2

2
(n∆t−t◦)2 , with j = 1, . . . , N , (3.11)

i◦ determines the distance of the source from the photonic crystal, H◦ the amplitude. The dipoles

have a Gaussian time profile, so that the incident spectrum is a Gaussian centered at ω◦ with

standard deviation σ. The time delay t◦ controls the switch-on of the source. By plugging Eq. (3.11)

into Eq. (3.9c), for i = i◦, the magnetic field finite-difference expression is replaced by

Hz|n+1
i,j = Hz|ni,j−

c∆t

∆x

(
Ey|n+1/2

i+1/2,j − Ey|n+1/2
i−1/2,j

)
+

+
c∆t

∆y

(
Ex|n+1/2

i,j+1/2 −Ex|n+1/2
i,j−1/2

)
+ Hz|ni◦,j(s) .

(3.12)

At the beginning of the simulation, the field components are initialized to zero. As time passes, the

Gaussian pulse impinges the photonic crystal and the transmitted power exits from the other side.
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A line of point detectors, see Fig. 3.2, is positioned at the right-hand side of the photonic crystal.

During the simulation, the values of the field components are stored at each detection point. At

the end of the time stepping, Fast-Fourier transform of the field components yields the frequency-

domain amplitudes. Then, at each point, the Poynting vector component parallel to the desired

direction is computed. The total transmitted power is obtained by averaging the Poynting vectors

over the line detector. The incident power is calculated by placing the same detector just in front

of the photonic crystal, before the source, and running the simulation without photonic crystal to

avoid superposition of the incident and reflected waves. The ratio of transmitted power over the

incident one yields the transmission coefficient.

The present implementation is used for modelling bulk two-dimensional photonic crystals and one-

dimensional cavities. The extension to more complex structures will be described in Sec. 3.4.

The Yee algorithm is second-order accurate. The accuracy can be improved by using smaller

and smaller space increments ∆x and ∆y. In general, having the smallest wavelength twenty times

larger than the grid’s pitch is enough for converged results. Notice that even if the loop over the

grid points is a O(N2) process, where N is the number of lattice points in one dimension, since the

time stepping has to satisfy Eq. (3.10), the whole algorithm is actually a O(N3) process with three

nested do loops. For this reason, the three-dimensional version of the FDTD method is very much

time consuming, with four nested do loops.

3.2.3 Modelling Out-of-Plane Losses

The above implementation of the two-dimensional FDTD method is valid for loss-less media.

Benisty, H., et al. (2000) proposed that the transmission of weak-confinement two-dimensional

photonic-crystal slabs can be calculated, with good approximation, using a two-dimensional model,

which accounts for out-of-plane losses by means of a phenomenological parameter. Such approach

is very convenient from the modelling point of view, because a two-dimensional method can be

employed for designing waveguide-based photonic crystals, in place of ab initio techniques. In the

transfer matrix method, losses are simply introduced by adding an imaginary part to the holes

dielectric function. In the FDTD method, the correct way to implement the Benisty model is to

add an artificial electrical conductivity to the air holes. To do that, the Yee algorithm has to be
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reformulated starting from Faraday’s law with a current

∇×H(x, t) =
4π

c
j(x, t) +

1
c

∂

∂t
ε(x)E(x, t) , (3.13)

where j(x, t) 6= 0 only inside the air holes. Using Ohm’s law, the above equation is rewritten as

∇×H(x, t) =
4π

c
σ(x)E(x, t) +

1
c

∂

∂t
ε(x)E(x, t) , (3.14)

A central-difference expression of Eq. (3.14) is obtained in analogy to the previous ones. The

conductivity is defined on the grid points as σi,j , likewise the dielectric function. For instance, the

update equation for the x electric field component reads

Ex|n+1/2
i,j+1/2 =




1− 4πσi,j∆t

2εi,j+1/2

1 +
4πσi,j∆t

2εi,j+1/2


Ex|n−1/2

i,j+1/2 +




1 +
4πσi,j∆t

2εi,j+1/2

c∆t

εi,j+1/2∆y




(
Hz|ni,j+1 −Hz|ni,j

)
. (3.15)

Notice that the central-difference has been obtained by using the semi-implicit approximation:

Ex|ni,j+1/2 =
Ex|n+1/2

i,j+1/2 + Ex|n−1/2
i,j+1/2

2
.

The other central-difference expressions are similar to Eq. (3.15).

Defining a conductivity parameter allows to include the effects due to out-of-plane losses. Since the

Benisty model deals with the dielectric function ε′′, sometimes it is better to express the parameter

in terms of ε′′: σ ' ωε′′/4π. Even if σ depends on ω, for narrow spectra it is assumed constant,

taking ω = ω◦, and the external loss parameter becomes ε′′.

The FDTD method is now applied to the systems of interest, namely GaAs-based and InP-

based two-dimensional photonic crystals. A similar derivation of the finite-difference equations is

easily written also for E -modes. Since these structures are intended to work with polarized light,

all simulations are performed for H -modes, if not otherwise stated.

3.3 GaAs- and InP-based Two-Dimensional Photonic Crystals

GaAs- and InP-based two-dimensional photonic crystals are designed in a slightly asymmetric

waveguide geometry. Fig. 3.3 shows the lateral profile of the InP heterostructure. The GaInAsP/InP
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planar waveguide is grown by metal organic vapor phase epitaxy on n-InP substrates. The core

is a 434nm-thick GaInAsP layer, which embeds two strain-compensated quantum wells, emitting

at 1.47µm and 1.55µm. The material is lattice matched to InP and possesses a direct band-gap

emission wavelength λGAP = 1.22µm. The quantum wells are used in characterization experiments

based on the internal-probe method [Labilloy, D., et al. A (1997); Ferrini, R., et al. (2002)]. The

top of the core is capped with a 200nm-thick InP layer. At the bottom cladding, a 600nm-thick

buffer, made of InP, separates the core from the n-InP substrate. In the spectral region of interest

(λ = 1.55µm), the refractive-index values ncore = 3.35 and nclad = 3.17 are assumed for GaInAsP

and InP, respectively. The resulting structure is a multimode waveguide with three TE guided

modes [Saleh, B. E. A., et al. (1991)].

The squared field profile ζ2(z) of the fundamental guided TE mode and the waveguide step-index

profile are displayed in Fig. 3.4. The calculated value of the fundamental mode is neff = 3.23. Due

to material dispersion, neff is a function of λ: for a photoluminescence beam centered at λ = 1.5µm,

the effective index dispersion of the fundamental guided mode is ∂n/∂λ = −2.5× 10−4nm−1. Tak-

ing into account material dispersion, the corrected values of the effective index range from 3.23 to

3.255. In order to perform FDTD simulations, the effective index is assumed to be 3.24 (εeff = 10.5),

which averages the effects of material dispersion.

The planar waveguide is etched to form a triangular lattice of air holes. In characterization

experiments, the lattice constant varies from' 240nm up to' 420nm to sample the whole photonic-

band-gap frequency range with the quantum well photoluminescence spectrum. This is the so-

called lithographic tuning, which relies on the scaling properties described in Sec. 1.2.3. Even if

the waveguide is asymmetric because of the top interface with air, the band gap properties are

close to those of symmetric weak-confinement systems, see Fig. 1.14. With the above choices of

the lattice constant, the resulting photonic-crystal slabs have a dimensionless thickness d/a larger

than 1. For this reason, the photonic resonances will be very close to the photonic bands of a

two-dimensional photonic crystal. In order to minimize propagation losses, the filling factor is

chosen to be relatively small, 35%, which is enough to build up a band gap for H-like modes.

Therefore, theory and experiments are performed with H-polarized light. The small asymmetry of

the waveguide assures that the polarization mixing is negligible and that the separation into H-like
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Figure 3.3 InP/GaInAsP waveguide heterostructure. Two
strain-compensated GaInAsP quantum wells emitting at
two different near-infrared wavelengths are embedded in the
core layer. Courtesy of Ferrini, R., EPFL, Switzerland.

Figure 3.4 Refractive index profile of the InP/GaInAsP waveguide het-
erostructure of Fig. 3.3 and squared field profile ζ2(z) of the
fundamental TE mode calculated for λ = 1.55µm. Courtesy of
Ferrini, R., EPFL, Switzerland.

modes and E-like modes is valid with good approximation.

These considerations suggest that modelling of the above structures can be done within a two-

dimensional approximation, assuming that the system is comparable to an effective two-dimensional

photonic crystal, once that the waveguide parameters are fixed. The propagation properties are

studied by means of the two-dimensional FDTD method, where the vertical confinement effect

is accounted for using the effective index of the fundamental guided mode (εeff = 10.5), in place

of the nominal material values, and out-of-plane losses are included with the ad hoc parameter

ε′′. Due to the difficulty of modelling complex structures (bent channel waveguides, splitters,
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combiners, add-drop filters) with ab initio methods, the two-dimensional approximation represents

a balanced trade-off between speed and accuracy in designing photonic-crystal building blocks.

Such approximation, however, has to be validated by comparison with a full three-dimensional

numerical method and/or by comparison with experiments. First, the method is tested with the

three-dimensional FDTD method as regards simple systems, like bulk photonic crystals, again

because performing ad initio simulations of advanced systems is not easy; secondly, comparison

with experimental data will be shown for more complicated structures, like linear defects with

bends and Y splitters.

Before testing the two-dimensional approximation against the three-dimensional FDTD method, it

is worth to mention some aspects concerning the etching techniques, which may have consequences

on out-of-plane losses.

3.3.1 Fabrication Methods and Etch Depth

The photonic crystal structure is etched in the GaInAsP/InP heterostructure by e-beam lithog-

raphy and chemically assisted ion beam etching (CAIBE). 150nm of SiO2 sputtered on the sample

yields an etch mask suitable for high-resolution patterning. The triangular lattice is written in

500nm spin coated polymethylmethacrylate (PMMA) resist by e-beam exposure. The PMMA is

developed in 1:3 methylisobutylketone/propanol and the hole pattern is transferred into the SiO2

layer using CHF3/Ar-based reactive ion beam etching (RIE). This two-step writing process pro-

vides higher selectivity in the mask patterning.

Since out-of-plane losses strongly depend on the hole morphology [Lalanne, Ph., et al. (2001)],

optimizing the etching process is of primary importance for obtaining high quality samples. In

fact, insufficient hole depth with respect to the vertical extent of the guided mode profile [Benisty,

H., et al. A (2002)] and/or conical hole shape [Ferrini, R., et al. (2002)] increase light scattering

into the substrate. In order to minimize out-of-plane losses, the etch depth has to be larger than

1.5µm, with holes as straight as possible. This implies high anisotropy of the etching process and

high aspect ratios. CAIBE based on Ar/Cl2 has been found to yield vertical profiles with high

aspect ratios, in comparison to the standard methane-based RIE. For this reason, Ar/Cl2 CAIBE

is used to etch the photonic crystal pattern into the InP-based heterostructure, using the e-beam
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Figure 3.5 SEM micrographs of a photonic crystal with lattice constant
a=400nm fabricated using CAIBE etching. The images were
taken before the SiO2 mask removal. Courtesy of Ferrini, R.,
EPFL, Switzerland, Mulot, M., KTH, Sweden, and Talneau,
A., LPN - CNRS, France.

exposed SiO2 mask. Thus, the sample is sputtered by an energetic argon ion beam with 5sccm flow

and 400eV ion energy. At the same time, a chemical attack is generated by a 1sccm chlorine flow.

Argon ions sputter phosphorus atoms, whereas chlorine enhances the removal of indium atoms by

forming volatile products (InClx). Since the vapor pressure of InClx is quite low at room temper-

ature, the sample needs to be heated to achieve efficient removal of the etch products. Optimal

samples are obtained for a temperature of about 200◦C and for an etching time of 20min..

Fig. 3.5 shows a selection of scanning electron microscopy (SEM) micrographs of InP-based photonic-

crystal test structures. The air holes are conical, with nearly vertical walls close to the surface and

strongly tapered at the bottom, resulting in a carrot-like profile. Notice also that the bottom tails

are bent with respect to the hole vertical axis. The mechanism responsible for this bending is

not well understood yet. The etch depth is about 2.5µm for hole diameters larger than 220nm.

However, for smaller diameters, the hole depth decreases with the hole diameter.

Having carrot-like hole shapes is equivalent, with good approximation, to having straight cylin-

drical holes with reduced etch depth [Ferrini, R., et al. (2002)], which results in increased out-of-

plane losses. Thus, from the modelling point of view, the effect of conical hole shape is accounted

for by simply increasing ε′′. On the other hand, if losses are too large, several photonic-crystal

functionalities are disrupted and the modelling itself becomes nonsense. That is why being able

to fabricate high quality samples with low propagation losses is so important not only in view of
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applications, but also at the characterization and modelling levels.

State of the art InP-based photonic crystals exhibit out-of-plane losses that can be modelled assum-

ing ε′′ ' 0.1, which is already an acceptable loss level for characterization and modelling purposes.

If one wants to have better performances, the fabrication process has to increase the etch depth

while keeping the hole shape cylindrical. Once that the etch depth has reached a critical value,

which depends on the waveguide and photonic-crystal geometry, the amount of out-of-plane losses

becomes equal to the intrinsic loss level, corresponding to infinite etch depth [Benisty, H., et al.

A (2002)], as highlighted in Sec. 2.5.3. However, one has always to deal with roughness-induced

scattering losses, which are unavoidable in real samples. Nevertheless, also this kind of loss mech-

anism can be included in the two-dimensional approximation through the ε′′ parameter.

Another efficient etching technique for InP-based photonic crystals is electron cyclotron resonance /

reactive ion etching (ECR/RIE), which provides 3.5µm-deep holes with vertical sidewalls over 2µm

at lattice constant a ∼ 380nm. Recently, the application of induced coupled plasma (ICP) etching

in the fabrication of InP-based photonic crystals has given very promising results as etch depth and

hole shape are concerned. The method is still under optimization within the PCIC collaboration.

As to GaAs-based photonic crystals, literature has been plenty of results since the pioneering

works of Krauss T. F., et al. (1996) (fabrication) and Labilloy, D., et al. A (1997) (characteriza-

tion). For this reason, a detailed description of the fabrication process is not reported here. It is

worth to mention, however, that the waveguide geometry designed in the PCIC project is similar

to the InP system, with AlGaAs and GaAs in place of InP and GaInAsP, respectively, and with

the quantum well layers replaced by quantum dots. Due to the different index profile of the GaAs

waveguide with respect to InP, the effective dielectric constant of the fundamental TE mode is now

εeff = 11.56, instead of 10.5. Therefore, as far as two-dimensional modelling is concerned, moving

from InP- to GaAs-based photonic crystals is resolved in changing the effective dielectric constant,

and, as necessary, the loss parameter ε′′. Moreover, since the index contrast between GaAs and

AlGaAs is higher than that between GaInAsP and InP, the field is more confined and a smaller

etch depth is enough for reaching intrinsic out-of-plane losses.
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3.3.2 Validation of the Two-Dimensional Approximation

The validity of the two-dimensional approximation in modelling weak-confinement photonic-

crystal slabs (effective dielectric constant plus ad hoc loss parameter) is tested here by comparison

with the three-dimensional FDTD method, which is the extension of the FDTD method to the full

three-dimensional space [Qiu, M. (2002); Kafesaki, M., et al. (2002)]. The test is performed on

simple crystals, like bulk photonic crystals or one-dimensional cavities embedded in two-dimensional

photonic crystals, as sketched in Fig. 3.6.

Fig. 3.7 shows the transmission spectrum along the Γ − K direction for a 8-unit-cell-thick bulk

Figure 3.6 Examples of simple two-dimensional photonic crystals.

(a) Cylindrical (b) Conical

Figure 3.7 3D vs 2D FDTD simulations. Transmission along the Γ − K

direction for a 8-unit-cell long photonic crystal; H-polarization.
Parameters of the 2D FDTD simulation: ε = 10.3, f = 38%
and ε′′ = 0.05 (0.12) for the cylindrical-hole (conical-hole) case;
3D FDTD simulation: f = 35%, a=420nm, etch-depth=2.5µm
and index profile taken from Fig. 3.4. 3D calculations courtesy
of Kasesaki, M., IESL - FORTH, Crete, Greece.
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photonic crystal, whose layout is displayed in Fig. 3.6, central image. The parameters of the two-

dimensional FDTD calculation (red curve) are chosen to fit the three-dimensional FDTD result

(black curve). Notice that the position and width of the photonic band gap are well reproduced

by the two-dimensional approximation. Also, the interference patterns agree, specially above the

air band edge. The discrepancies below the dielectric band edge have to be attributed to some

numerical issues encountered in the three-dimensional method, which are not solved yet. The left

panel of Fig. 3.7 is for the cylindrical-hole case, while the right panel is for the conical-hole case. By

tuning the loss parameter ε′′, the two-dimensional approximation accounts for the hole morphology:

conical holes correspond to increased out-of-plane losses, which agrees with the findings of Benisty,

H., et al. A (2002). It is noticeable that the conical shape enters the two-dimensional approximation

by simply increasing the imaginary dielectric constant.

In order to fit the spectra, the effective dielectric constant has to be 10.3 instead of 10.5. The

difference can be attributed to fact that the patterning changes the confinement properties of the

planar waveguide. In other words, the field confinement is not independent of the photonic-crystal

pattern; therefore, not necessarily the effective dielectric constant of the bare waveguide is the best

choice for the two-dimensional approximation. One should homogenize each patterned layer within

effective medium theory, then calculate the effective dielectric constant of the fundamental guided

mode. Nevertheless, since 10.3 vs. 10.5 is a small correction, it is fine to assume 10.5 as background

dielectric constant in two-dimensional simulations.

The fitting filling factor is 38% against a nominal value of 35%, used in the full calculation. The

correction is easily explained by recalling that in weak-confinement photonic-crystals the gaps open

for smaller filling factors than for the two-dimensional case, see Fig. 1.14. Since for small filling

factors the gap increases with the hole radius, the two-dimensional model must increase the nominal

filling factor of a few percent.

Overall, the fits of Fig. 3.7 are meant to demonstrate the validity of the two-dimensional ap-

proximation, rather than tuning the photonic-crystal parameters, effective dielectric constant, filling

factor and imaginary dielectric constant. In the following sections, which are dedicated to the de-

sign of basic photonic-crystal functionalities, the parameters are fixed to εeff = 10.5, f = 35% and

ε′′ = 0.1, if not otherwise stated. Comparison with experimental data will further strengthen the
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two-dimensional approximation.

3.4 W1 and W3 Straight Waveguides

Linear defects in photonic crystals represent the basic passive elements of a photonic integrated

circuit. As already explained in Sec. 1.5, making linear defects in two-dimensional photonic crys-

tals allows to guide light along a desired direction, which is, in fact, the analog of copper stripes

in printed electrical circuits. Straight waveguides1 in GaAs- and InP-based photonic crystals are

created by simply transferring the desired design to the e-beam mask, used in the lithographic pro-

cess. Among the all possible choices, a waveguide is obtained by removing a set of adjacent rows

of air holes along the Γ−K lattice direction, see for instance Fig. 3.8b. As already mentioned in

Sec. 1.5, these systems are shortly called WN waveguides, where N stays for the number of removed

rows. The choice of using WN waveguides instead of many other possibilities [Johnson, S. G., et

al. (2000)], is motivated by the fact that this class of linear defects supports index-confined modes,

where the field is mainly concentrated in the dielectric channel. These modes suffer smaller propa-

gation losses than the Bloch modes of bulk photonic crystals, because the effect of the patterning is

marginal. Since the modes of weak-index confinement photonic crystals have always intrinsic losses,

the idea is to minimize propagation losses by using the photonic band gap only where it is strictly

necessary, as to form bends or cavities, while straight propagation is guaranteed by conventional

index guiding. It is convenient to work with the fundamental guided mode2, because is the one

exhibiting the highest field confinement into the dielectric channel.

Given WN as the basic waveguide design, what is the best choice for the number of rows to

remove? A narrow waveguide is likely to be single-mode, but, at the same time, it possesses higher

propagation losses with respect to a larger waveguide, which, on the contrary, is likely to be multi-

mode. This is because field confinement is more effective in “large” waveguides. The advantage

of using single-mode waveguides will be apparent when dealing with transmission through sharp

bends. One has to find the right trade-off between the above aspects, also keeping in mind possible

1The term waveguide is used either to refer the planar waveguide (heterostructure), either the linear defect created
inside the two-dimensional photonic-crystal pattern.

2Actually, it would be more correct to say quasi-guided, because of the intrinsic out-of-plane losses. For guided
mode is intended the confined state due to the linear defect.
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(a) (b)

Figure 3.8 (a) FDTD simulation of a W3 photonic crystal waveguide. The
source (S) has a Gaussian profile perpendicular to the waveg-
uide axis. The detector (D) covers the exit of the waveguide.
The edges of the computational mesh are terminated with Liao
absorbing boundary conditions (black). (b) SEM micrograph of
a W1 waveguide; courtesy of Talneau, A., LPN - CNRS, France.

issues as regards performing experiments on these systems.

The W1 waveguide (one row removed) represents the single-mode waveguide, while the W3 waveg-

uide (three holes removed) represent the multi-mode waveguide. Larger waveguides are not consid-

ered in detail because they support many modes and the analysis would be too much complicated.

The W1 waveguide has already been introduced in Sec. 1.5. Here, the study is completed by calcu-

lating and examining the transmission properties, with particular attention to the mini-stop band

frequencies. Concerning the W3 waveguide, both dispersion relation and transmission spectrum

will be presented.

As far as simulations are concerned, all these structures are modelled within the two-dimensional

approximation, using the effective dielectric constant and the loss parameter. In Sec. 3.2.2, the two-

dimensional FDTD method has been presented in detail for the case of bulk photonic crystals. For

calculating the transmission properties of WN waveguides, a few changes are necessary regarding

the FDTD source and the boundary conditions. First of all, since the system is not anymore periodic

in the direction perpendicular to propagation, Bloch’s boundary conditions are not applicable, but

Liao’s must be used instead. Since the fundamental mode is the one of interest, the FDTD source
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has to optimize the coupling between the incident field and the guided mode, which is not the case

for a plane-wave source. Fig. 3.8a sketches the setup for a FDTD simulation of a W3 waveguide.

The thick black lines along the perimeter represent the stencils for Liao’s boundary conditions. The

source (S) is centered with the waveguide and the dipoles are disposed with amplitudes that form

a Gaussian profile

Hz|ni◦,j(s) = H◦e
− 1

2ς2
(j∆y−y◦)2 cos(ω◦n∆t)e−

σ2

2
(n∆t−t◦)2 , with j = 1, . . . , N , (3.16)

where y◦ is the y coordinate of the waveguide axis. The width of the source, ς, can be adjusted

according to the waveguide: W1 or W3, etc. . . . The parity of the source selects only guided modes

that are spatially even with respect to the waveguide axis. Moreover, the Gaussian profile primarily

couples to the fundamental waveguide mode. A detector (D) is positioned at the right end of the

waveguide. Also in this case, the width of the detector depends on the waveguide. Notice that

a point detector could not be used, because for multi-mode waveguides it would give incorrect

transmission results.

3.4.1 The W1 Waveguide

The dispersion relation of a W1 waveguide is reported in Sec. 1.5.2, Fig. 1.16, to discuss an

example of WN linear defects in two-dimensional photonic crystals. The system is characterized by

a background dielectric constant equal to 11.56, corresponding to the effective dielectric constant of

GaAs-based photonic-crystal slabs. The filling factor is 60%, which is larger than the usual values

chosen for real samples. In fact, for small filling ratios, the W1 waveguide does not exhibit mini-

stop bands in the dispersion relation, being single-mode for almost every frequency in the band gap

[Agio, M., et al. (2001)]. The choice of f = 60% is dictated by the intention of studying a guided-

mode spectrum with mini-stop bands and higher order modes within the band gap frequencies,

which is physically more interesting from a theoretical point of view and is also a completion of the

discussion started with Sec. 1.5. For this case only, out-of-plane losses are not included, i.e. ε′′ = 0.

Fig. 3.9 groups the transmission spectra for both bulk two-dimensional photonic crystal and W1

waveguides of different length. The curves are calculated for H -modes that are even with respect

to the waveguide axis, by choosing the appropriate FDTD source: Eq. (3.11) for the bulk structure
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Figure 3.9 Transmission spectra for various lengths of the W1 waveguide
described in section 1.5.2: H-polarization, ε = 11.56, and
f = 60% (as in Fig. 1.16). The bold solid (dotted) line delimits
the Γ − K (Γ − M) H -modes band gap of the bulk photonic
crystal. The solid, dotted, and dashed lines correspond to the
transmission along the waveguide with length 10a, 30a, and
60a, respectively.

and Eq. (3.16) for the W1 waveguide. The corresponding guided-mode dispersion relation is shown

in Fig. 1.16. Inside the photonic band gap, the transmission coefficient of the waveguide is above

80%3, for almost all frequencies, except for a/λ = ωa/2πc = 0.321 and a/λ = 0.377, which

correspond to two mini-stop band energies, namely the gap at the edge of the reduced Brillouin

zone and the anti-crossing with the higher-order mode, respectively. Notice also that, as the length

of the waveguide increases, both drops at the mini-stop bands get larger. On the other hand, for

frequencies matching the fundamental guided mode, transmission is independent of the waveguide

length.

To better understand the mini-stop bands, the intensity of the electric field |E|2 for a/λ = 0.321

and a/λ = 0.377 is plotted in Fig. 3.10a and Fig. 3.10b, respectively. In Fig. 3.10a, the profile

extends all over the waveguide, similar to the pattern of the fundamental guided mode. However,

3Because the coupling efficiency of the incident and outgoing waves with the guided mode, the maximum trans-
mission could result less than one. The fact that transmission is independent of the waveguide length confirms that
there are no intrinsic losses for ε′′ = 0 and that reflection occurs at the waveguide interfaces.
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(a) a/λ = 0.321 (b) a/λ = 0.377

Figure 3.10 Normalized intensity of the electric field for the frequencies
corresponding to the low-frequency mini-stop band (a) and
high-frequency mini-stop band (b) of Fig. 3.9.

it slowly decays as the field propagates through the waveguide. Indeed, it corresponds to the gap in

the folded fundamental mode for Bloch vector k = 0. The profile shown in Fig. 3.10b is completely

different than that of Fig. 3.10a. Due to the anti-crossing between the fundamental mode and the

higher-order mode, the field pattern results from a mixing of the two modes. Notice that the field

decay is much stronger than for the case of Fig. 3.10a, as it is also apparent in the transmission

spectra of Fig. 3.9.

As a last remark, it is worth to briefly discuss the dependence of the mode dispersion with

the filling ratio. Since the fundamental mode is almost concentrated in the dielectric channel,

its dispersion relation feels the filling factor f mainly through the width of the waveguide (w =

a(
√

3−
√

2
√

3f/π). On the other hand, the higher-order mode is more extended in the photonic-

crystal region and its dispersion relation will be more sensitive to the filling ratio. Indeed, the

fundamental mode is guided by the high-refractive-index channel, as for dielectric waveguides, and

the the photonic band gap is not important. On the contrary, the higher-order mode does exist

because of the photonic band gap. The fact that the filling ratio is not easily controlled by the

fabrication process further motivates the choice of working with the fundamental mode of WN

waveguides, which exhibits a good dispersion tolerance over ∆f . The same is also true as to

tolerance with respect to possible local disorder in the hole morphology.
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3.4.2 The W3 Waveguide

The W3 waveguide is created by removing three adjacent rows of air holes along Γ − K, see

Fig. 3.8a. The dispersion relation and the transmission spectrum for H -modes, with spatially even

parity with respect to the waveguide axis, are reported in Fig. 3.11. The structure parameters

correspond to InP-based photonic crystals: ε = 10.5, f = 35% and ε′′ = 0.1, for the transmission

calculation only. The width of the band gap is smaller than for the W1 case, where the filling

ratio was chosen to be f = 60%. The waveguide supports both index-guided and band-gap guided

modes. The fundamental mode, which is index-guided, anti-crosses with a higher-order mode at

a/λ ' 0.26. The latter is characterized by a flat dispersion, typical of band-gap guided modes.

Another higher-order mode exists, which also anti-crosses with the flat-dispersion guided mode at

a/λ ' 0.275. By considering only H -modes with even parity with respect to the waveguide axis,

the waveguide is never single-mode, except a narrow frequency window around a/λ ∼ 0.22.

As to the transmission spectrum, notice that there is a dip in correspondence of the mini-stop band

between the fundamental and the flat-dispersion guided modes. The other mini-stop band, located

at a/λ = 0.275, is not seen, because the FDTD source is tuned to excite the fundamental guide

mode. In fact, this is also a proof that the FDTD simulation samples the dispersion relation of the

fundamental mode. The transmission reaches 90% despite the presence of out-of-plane losses. First

of all, the coupling between the incident field and the fundamental guided mode is better than for

the W1 waveguide. Secondly, since the fundamental mode is well confined in the dielectric channel,

the effect of ε′′ is small.

By using the same loss parameter ε′′ and the same filling factor for computing the transmission

spectra of W1 and W3 waveguides, it is clear that losses are higher in the narrower waveguide,

because the ratio between the field energy in the air holes and in the dielectric channel is inversely

proportional to the width of the waveguide and only the field energy in the air holes suffers propa-

gation losses. Moreover, it is easier to couple light into W3 waveguides, than in W1, again because

of the width of the dielectric channel.

These considerations advantage the W3 against the W1 waveguide as regards application in photonic-
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Figure 3.11 (a) Dispersion relation for a W3 waveguide, with ε = 10.5, and
f = 35%. The solid lines refer to H -modes that are spatially
even with respect to the waveguide axis; the odd modes are not
shown. The gray areas are the projected H -modes of the bulk
photonic crystal. (b) H-polarized transmission for the same
W3 waveguide of length 40a and loss parameter ε′′ = 0.1.

crystal circuits. However, the W3 waveguide is multi-mode, while the W1 is single-mode. Such

difference is not much important as long as modal mixing is negligible, like the roughness-induced

mixing in straight waveguides. But, when a sharp bend connects two waveguide sections, coupling

among the guided modes might not be small and single-mode wave-guiding ceases to exist. Without

single-mode wave-guiding, cascading of building blocks is not possible any more. Such issue might

preclude the realization of integrated photonic circuitry. In this situation, the solution could be

using the W1 waveguide, despite being more lossy than the W3. However, the trade-off might not

work if the amount of losses is too large. Scope of the next section is to present all these facts

related to the bending of light in W1 and W3 waveguides. By accurate bend design, single-mode

guiding is found to be possible also in multi-mode channels.
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3.5 Bends in W1 and W3 Waveguides

Designing WN waveguides with sharp bends is easily accomplished by connecting two straight

waveguide sections created along different, but equivalent, lattice directions, as displayed in Fig. 3.12.

In this sense, the triangular lattice is suitable for making ±60◦ and ±120◦ sharp bends by exploit-

ing the six-fold equivalent Γ −K lattice direction [Lončar, M., et al. B (2000); Tokushima, M.,

et al. (2000); Chutinan, A., et al. (2000); Benisty, H., et al. B (2002)]. Notice that it is also

possible to make 90◦ sharp bends by connecting a WN waveguide with another waveguide created

along the Γ −M direction. However, it is better that the straight sections have always the same

wave-guiding properties, if not explicitly necessary. That is why 90◦ bends are usually avoided in

triangular-lattice photonic crystals. Instead, 90◦ bends are more suitable for square-lattice photonic

crystals [Mekis, A., et al. (1996); Lin, S.-Y., et al. B (1998)].

Figure 3.12 Sharp bends in W1 and W3 waveguides.

When a sharp bend is created in a dielectric waveguide, part of the power is lost, because the

condition of total internal reflection is not fulfilled at the bend [Espinola, R. L., et al. (2001)].

Contrary to dielectric waveguides, the index-guided mode of the WN waveguide does not leak

at the bend, thanks to the photonic band gap, which makes the system ideally loss-less. After

the bend, the fundamental mode continues to travel under the index-guiding mechanism. The

picture index-guiding ⇒ band-gap ⇒ index-guiding can be explained by considering the bend as

a low Q-factor resonant cavity [Mekis, A., et al. (1996, 1998)]. The waveguide sections carry the

power to the resonant cavity using the index-guided fundamental mode. When a cavity mode is

excited, the power flows only along the waveguide sections, because the band gap prevents light



WAVE PROPAGATION 148

from escaping in other directions. If resonance occurs between the guided mode and the cavity

mode, the transmission is expected to be maximum.

Actually, the picture is not so simple if other aspects are considered, like the multi-/single-mode

nature of the waveguide and of the resonant cavity or out-of-plane diffraction losses, which can be

larger for the resonant cavity. For example, the fundamental guided mode can enter the resonant

cavity and exits as a superposition of guided modes (fundamental + higher-order modes). Modal

mixing has two consequences: first of all, it prevents the cascading of building blocks, because it

modifies the initial conditions (the outgoing field becomes the incident field of the next block),

which transmission depends on. Secondly, the power travelling on higher-order modes is rapidly

lost, because these modes exhibit more losses than the fundamental guided mode. As to out-

of-plane losses, the loss parameter ε′′ acts on the field while it oscillates in the resonant cavity,

upon bouncing against the photonic-crystal walls. The more the field is trapped inside the cavity,

the higher are losses. The mechanism qualitatively accounts for losses at the bend. For a more

quantitative formulation, three-dimensional models might be required. There are studies performed

on double bends in air-bridge systems showing that the two-dimensional FDTD method is in good

agreement with three-dimensional FDTD results, even without the loss parameter [Chutinan, A.,

et al. (2000)].

Since the bend breaks the translational symmetry and also the mirror symmetry with respect

to the waveguide axis, all the guided modes with defined polarization (H -modes or E -modes)

are coupled to each other. Therefore, for studying the bend-induced modal mixing, one has to

calculate the dispersion relation irrespective of the parity with respect to the waveguide axis.

Concerning wave propagation, the FDTD simulation excites the fundamental guided mode and

detects the outgoing field, without any information on the modal mixing that occurred at the

bend. Nevertheless, some information can be obtained by looking at the field pattern for selected

frequencies, in general those corresponding to maximum transmission. The FDTD detector is

always placed perpendicular to the waveguide axis and the photonic crystal is cut along Γ − M ,

so that the waveguide is interfaced with the external medium like for the straight-waveguide case.

This flexibility is typical of the FDTD method and it explains why it is so extensively used for

research in photonic crystals.
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3.5.1 The W1 Waveguide

(a) (b)

Figure 3.13 (a) The same dispersion relation of Fig. 1.16. Solid (dotted)
lines refer to H -modes that are spatially even (odd) with re-
spect to the waveguide axis. (b) Normalized intensity of the
electric field at a/λ = 0.2607 for a sharp bend in a W1 waveg-
uide. Structure parameters as in Fig. 1.16.

The W1 waveguide presented in the previous sections is characterized by a wide frequency

range where the waveguide is single-mode. However, the dispersion relation was calculated only

for H -modes with spatially even parity with respect to the waveguide axis. The dispersion relation

with all H -modes, even and odd, is shown in Fig. 3.13a. Modes with opposite parity cross, while

modes with the same parity anti-cross. Notice that the system supports also odd modes within the

band gap frequencies, reducing or cancelling some single-mode regions found for even modes only.

In practice, the waveguide is really single-mode in three regions: the first one is located around

a/λ ∼ 0.26, between the bulk bands and the first odd mode; the second one, which is also the

largest one, occurs for a/λ between ' 0.29 and ' 0.33, corresponding to the anti-crossing between

the first and second odd mode; the third one is around a/λ ' 0.395 and it is due to the mini-stop

band of the odd mode at k = 0. Every single-mode region is characterized by the presence of the

sole fundamental guided mode. For achieving single-mode resonant transmission through a sharp
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bend, one has to focus on the single-mode frequency regions of the waveguide.

Fig. 3.13b displays the modulus of the electric field |E(x)| for a/λ = 0.2607, which belongs to

the first single-mode frequency region. In this case, out-of-plane losses are not considered. The

field pattern is helpful in understanding the bending mechanism. The fundamental guided mode

impinges the bend, where it couples to a resonance, clearly represented by darker tones of gray.

Then, the resonance excites the fundamental guided mode in the second waveguide section. The

transmission is close to one, as it can be also deduced from the levels of gray in the field plot.

3.5.2 The W3 Waveguide

(a) (b)

Figure 3.14 (a) The same dispersion relation of Fig. 3.11a. Solid (dotted)
lines refer to H -modes that are spatially even (odd) with re-
spect to the waveguide axis. (b) Normalized intensity of the
electric field at a/λ = 0.2297 for a sharp bend in a W3 waveg-
uide. Structure parameters as in Fig. 3.11. Note: in this case
ε = 11.56 instead of 10.5.

Likewise for the W1 waveguide, the discussion starts from the dispersion relation for H -modes,

represented in Fig. 3.14a. The structure parameters are reported in the figure caption. Since the

waveguide is larger than the W1, an index-guided odd mode can exist, in addition to the fun-

damental guided mode, which is spatially even. The two first index-guided H -modes are easily
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recognizable because they appear also outside the band gap; for example, below the bulk bands.

Inside the band gap, the two modes run almost parallel to each others and anti-cross with the

higher-order modes of the same parity, and cross with those having opposite parity. Inside the

band gap, the waveguide is multi-mode everywhere; therefore, since it is likely that the bend will

mix the incident fundamental mode with the other ones, single-mode transmission is not expected.

To give an idea of the modal mixing occurring at the bend, look at the electric field pattern of

Fig. 3.14b. The incident field excites a resonance at the bend, but, this time, the power is redis-

tributed among more guided modes. That is why the field profile shows irregularities, with nodes

in the direction perpendicular to the waveguide axis. Notice also that part of the power is reflected

and interferes with the incident guided mode. The same happens for every frequency chosen within

the band gap. It is clear that this situation is not suitable for cascading other elements, because

the bend disrupts single-mode transmission. On the other hand, the bend is a required building

block for designing photonic integrated circuits.

In summary, the W1 waveguide allows single-mode transmission through sharp bends, whereas

the W3 waveguide, being multi-mode in the whole band-gap region, exhibits modal mixing at each

bend insertion. On the contrary, the W1 waveguide is more sensitive to out-of-plane losses than the

W3; losses that are unavoidable in weak-confinement photonic-crystal slabs. That is why a large

part of the research community has chosen to work with single-mode W1 waveguides created in

high-index-contrast photonic-crystal slabs, where the fundamental mode is truly guided below the

light line [Baba, T., et al. (1999, 2001); Chutinan, A., et al. (2000); Lončar, M., et al. A (2000);

Chow, E., et al. (2001), and the feature issue IEEE J. Quantum Electronics, 38 (7)]. However,

the light line restricts the guided-modes region to a narrow interval where the dispersion is rather

flat, like for “heavy” photons. This results in a narrow transmission bandwidth and a small group

velocity. Furthermore, as soon as the translational symmetry is broken, by inserting bends or

resonant cavities, large out-of-plane losses are likely to occur.

By considering all these facts and also the associated fabrication technology, the choice is to embark

on a novel proposal: release the single-mode condition over the channel waveguide and choose to

work with W3 waveguides created in weak-confinement photonic-crystal slabs, having a moderate
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filling factor (' 35%) to minimize out-of-plane losses, and invest on designing efficient sharp bends

towards high single-mode transmission. Indeed, modal mixing occurs at the bend, not along the

waveguide; in other words, if the bend is designed so that coupling between the fundamental mode

and higher-order modes is negligible, single-mode transmission will be achieved.

3.6 Modelling of Bends in W3 Waveguides

Essentially, the modelling of bends in multi-mode waveguides has to tackle the following issues:

modal mixing, reflection and out-of-plane losses. The final objective is to achieve single-mode

transmission with both minimum reflection and out-of-plane losses. Even if the photonic-crystal

parameters and the waveguide width are fixed, there are still too many degrees of freedom in the

choice of the proper design. Moreover, since the FDTD method does not provide information on

the modal composition of the guided field, it is also difficult to know what are the mode-coupling

coefficients associated to a certain bend design. On the other hand, the cut and try design might

be long and unfruitful. The choice is to split the problem into specific parts, which allow to

decompose the objective into three milestones. The first part (milestone) will deal with increasing

the transmission level in the presence of out-of-plane losses, included through ε′′; modal mixing is

not considered at this stage. The second part (milestone) aims to find the conditions for single-

mode transmission, irrespective of the transmission level and bandwidth. The final part (milestone)

gathers all these information to form the final proposal.

The first milestone is pursued by bend smoothing (Sec. 3.6.1) and adding air slits at the bend

Figure 3.15 Smoothing a bend moving holes at the corner.

corners (Sec. 3.6.4). The second milestone is tackled starting from an extension of the FDTD

method, which allows to evaluate the modal mixing of a bend (Sec. 3.6.2). By exploiting the idea
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of adiabatic tapering, an implementation of single-mode bend is proposed (Sec. 3.6.3). Finally,

tapering, smoothing and slits are put together in a single bend design (Sec. 3.6.4).

3.6.1 Moving holes

Figure 3.16 Experimental spectra (black curves) and calculated spectra
(gray curves) for a corresponding set of bend designs (left
panels). From top to bottom: sharp bend, one-hole-moved,
three-holes-moved. The gray areas refer to the mini-stop band
region. The simulations were performed choosing ε = 10.5,
f = 35%, and ε′′ = 0.1. The calculated spectra were slightly
stretched to fit the experiments, yielding an effective dielectric
function ε = 10.4 instead of 10.5. The experimental data are
courtesy of Moosburger, J., University of Würzburg, Germany
and Olivier, S., EPP, France.

The first attempt to improve the transmission through a bend transition is to introduce a short

section at 30◦, i.e. along the Γ−M direction, by displacing holes from the internal to the external

corner, as shown in Fig. 3.15. This is also the idea proposed by Mekis, A., et al. (1996) for a

90◦ bend in a square lattice of dielectric pillars in air. In a very simple picture, the hope is that
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the tilted section act like a mirror for the incoming wave, increasing the transmission and reducing

the coupling to higher-order modes. In another picture, moving holes can be seen as a way to

smooth the bend with increasing length of the Γ−M section. The rule for bend smoothing reads

p = n(n + 1)/2, where p is the number of holes moved from the inner to the outer corner and n

runs over 0,1,. . . . For n = 0, the design returns to be the sharp bend. The most interesting

Figure 3.17 Experimental spectra (black curves) and calculated spec-
tra (gray curves) for a corresponding set of bend designs
(right panels). From top to bottom: six-holes-moved,
ten-holes-moved, fifteen-holes-moved. The gray areas refer to
the mini-stop band region. The simulations were performed
choosing ε = 10.5, f = 35%, and ε′′ = 0.1. The calculated
spectra were slightly stretched to fit the experiments, yielding
an effective dielectric function ε = 10.4 instead of 10.5. The
experimental data are courtesy of Moosburger, J., University
of Würzburg, Germany and Olivier, S., EPP, France.

cases are for small p, because, for large p, the Γ−M section becomes effectively another waveguide

between two bends, rather than a single bend. Figs. 3.16 and 3.17 report the transmission spectra

for smoothed bends with p = 0 up to p = 15. The gray lines represent the calculated spectra, while
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the black lines are experimental data obtained within the PCIC collaboration. Notice the good

agreement between modelling and experiment, also with respect to fine spectral features. Actually,

the calculated spectra have been slightly stretched to better fit the experimental curves. This im-

plies that the optimal modelling parameters are a smaller effective dielectric constant (εeff = 10.4)

and a larger filling factor (f ∼ 40%), which conforms with the findings of Sec. 3.7. Despite these

small corrections, the experimental data are another proof, besides the comparison with three-

dimensional FDTD results, that the two-dimensional approximation is a valid tool for studying

wave propagation in weak-confinement photonic crystals.

The corresponding bend design is placed aside of each transmission spectrum. The gray region,

around a/λ = 0.27, refers to the mini-stop band in the fundamental mode. Since the straight

waveguide cannot carry power for frequencies within the mini-stop band, it is usual to exclude

this region when comparing the transmission levels of different bend designs. It is apparent that

the overall transmission increases up to p = 6, 10 and decreases for a larger number of displaced

holes. In fact, already for p = 15, the smoothed bend appears more like two bends connected by

a short Γ −M waveguide, which involves the transmission properties of the Γ −M section itself.

For ε′′ = 0.1 the maximum transmission reaches 80%, which is slightly less than the experimental

levels. An explanation for that could derive from an overestimation of out-of-plane losses or from

reflection at the interfaces between the waveguide sections and the background medium.

The method of bend smoothing seems to be quite successful as far as overall transmission is con-

cerned. For a more complete analysis, one can refer to the works of Moosburger, J., et al. (2001),

Talneau, A., et al. A (2002) and Benisty, H., et al. B (2002). The latter contains a systematic

study of bend models based on the idea of smoothing by displacing holes.

For a deeper insight, it would be necessary to look at the various field patterns for several

bend designs and frequencies, since the FDTD method does not provide information on the modal

mixing occurring at the bend transition. Based on the field profiles seen for the frequencies where

the transmission is maximum, none of the above bend designs attained single-mode transmission.

Indeed, the field patterns are very similar to the one reported in Fig. 3.14b. For such reason,

further design is necessary in view of pursuing the second milestone: conditions for single-mode

transmission. To this purpose, it is important to rule out how a bend scrambles the fundamental
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guided mode.

3.6.2 The Modal Transmission

The FDTD method is not a modal numerical method, therefore it is difficult to get information

on the modal features of the calculated transmission. On the other side, it is as well difficult calcu-

lating the transmission of a single bend with modal expansion methods. In the FDTD method, the

transmission is calculated detecting the outgoing power along a line perpendicular to the waveg-

uide axis. The power is averaged along that line and divided by the incident power. No modal

information is preserved when the power is averaged. In order to retain full information on the

modal composition of the outgoing power, one should project the detected fields on the guided

modes of the straight waveguides, which implies the knowledge of the profile of all guided modes

for all frequencies. This procedure is time consuming and not easy to implement. However, one

can avoid to calculate the modal transmission for all modes as long as the main interest concerns

the transmission into the fundamental mode. Assume that the incident power is mainly in the

fundamental guided mode, that is true for frequencies not in the mini-stop band region. The bend

couples the fundamental guided mode to the other modes of the waveguide. After the bend, each

mode propagates independently along the straight channel. At the exit one can thus know which

modes were excited by the bend. It is important to know how much power is preserved into the

fundamental mode and consider the others as lost. For this piece of information it is not necessary

to calculate the profile of every mode. The outgoing fields are projected onto their even/odd com-

ponents with respect to the waveguide axis and the even/odd Poynting vectors are subsequently

calculated. In practice, the FDTD source and detector are swapped with respect to each others:

the source is place in front of the tilted section and the detector is in front of the waveguide section

whose axis is aligned with the x direction. The trick facilitates the decomposition into even and

odd fields. Even/odd transmission is the first step to estimate the modal mixing.

The second step is to extract the power of the fundamental guided mode from the even transmis-

sion. This part is not yet optimized. At the moment it is only possible to show contour plots

of the Poynting vector where the x − y plane represents the frequency and the distance from the

waveguide axis. The profile of the Poynting vector provides to some extent details on the modal
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composition of the even transmission: a Gaussian profile suggests high transmission into the fun-

damental guided mode. The projection onto the fundamental guided mode is feasible and will

be done in the near future. In summary, with the even/odd decomposition the conversion of the

fundamental mode into even and odd modes is calculated. The spectra are normalized with respect

to the incident power. Secondly, with the contour plots, one roughly knows how much power goes

into the fundamental mode. Here, the Poynting vector, corresponding to spatially even modes, is

weighted with a gaussian function exp(−(ω − ω◦)2/σ2), to account for the spectral profile of the

incident pulse, and it is normalized to unity.
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Figure 3.18 Modal transmission for a three-holes-moved bend (a) and a
ten-holes-moved bend (b). The black line refer to the total
transmission. The red (blue) line corresponds to the trans-
mission into spatially even (odd) modes with respect to the
waveguide axis. Parameters: ε = 10.5, f = 35%, and ε′′ = 0.1.

Following the above directions, the transmission into even and odd modes has been calculated for

the bend designs discussed in the previous section. Two representative cases are shown in Fig. 3.18,

where the total transmission (black curves) is also shown4. First of all, there are transmission peaks

where the contribution of odd modes is important, specially for the case of p = 3. These peaks,

which are apparently suitable for wave propagation if one looks only at the total transmission,
4The spectra are slightly different form those of Figs. 3.16 and 3.17, because they have not been stretched.
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must be excluded, because a relevant portion of the power is “lost” into odd modes. In general, the

bends with larger p exhibit less coupling with odd modes, as confirmed by a comparison between

Fig. 3.18a and Fig. 3.18b. Moreover, for any design, it turns out that the odd transmission is

zero for a narrow frequency window close to a/λ = 0.24. This is not because the bend does not

couple the fundamental to the odd modes, but because the W3 waveguide has a mini-stop band

in the first odd mode, as displayed in Fig. 3.14a. Therefore, the propagating field cannot have

a component into odd modes and transmission may occur into even modes only. The fact that

the even transmission is maximum close to this mini-stop band has to be attributed to resonant

scattering, rather to the above cited mini-stop band.

Given that the best even transmission is obtained for a/λ ' 0.24, for knowing how much power

remains to the fundamental mode, one has to analyze the distribution of the Poynting vector along

the linear detector. Fig. 3.19a and Fig. 3.19b show contour and surface plots of the Poynting-

(a) p = 3 (b) p = 10

Figure 3.19 Poynting vector as a function of frequency and distance
from the waveguide axis for the transmission into spatially
even modes. y=1 corresponds to y = 3

√
3/2a. (a)

three-holes-moved bend; (b) ten-holes-moved bend. Param-
eters as in Fig. 3.18.

vector profile for the bend designs corresponding to p = 3 and p = 10, respectively. The x axis refers
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to frequency, whereas the y axis represents the distance from the waveguide axis. Both designs are

characterized by a main transmission contribution of the fundamental mode for a/λ ∼ 0.24, where

the higher-order even mode has a small group velocity. Looking at the whole band gap, notice that

the are regions where the transmission goes primarily into higher-order modes.

In conclusion, analyzing the modal transmission provides a better understanding of the mode

mixing occurring at the bend transition. In some cases, the presence of mini-stop bands may reduce

the number of modes, which necessarily results in a minor mode scrambling, without changing the

mode-coupling coefficients associated to a certain bend design. A particularly favorable situation

is represented by the mini-stop band between the odd modes at a/λ ' 0.235, which overlaps to

a resonant scattering condition for even modes. There, only two even modes remain for guiding

light to and from the bend, namely the fundamental and the next higher-order mode. If one

could eliminate also this higher-order mode, single-mode transmission would be achieved. In other

words, once identified the frequency region where the waveguide supports the smallest number of

guided modes, including the fundamental mode, the idea is to work on the bend design to eliminate

only those mode-coupling coefficients, which are essential for attaining single-mode transmission.

However, even if a few coupling coefficients are involved, it is difficult to know how they depend on

the bend geometry.

3.6.3 Taper

A better bend design, for single-mode transmission, can be found by exploiting the concept

of adiabatic taper [French Patent 0115057 (2001); Palamaru, M., et al. (2001); Lalanne, Ph., et

al. (2002)]. The principle of operation of an adiabatic taper relies on the fabrication of holes with

progressively varying diameter and depth, which synthesizes an artificial material with a gradient

effective index. When a certain mode enters the taper, it undergoes a transition towards the mode

supported at the other side of the taper. Such smooth transition is devised for optimizing the

coupling between two modes travelling under different structures [Mekis, A., et al. (2001); Xu, Y.,

et al. (2000)]. For instance, coupling a ridge waveguide to a WN waveguide.

The same idea of taper can be applied to a bent W3 waveguide: an overall optimized transmission

may be obtained using the W3 waveguide in the straight sections and a narrower mono-mode
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waveguide (W1) at the bend [Talneau, A., et al. B (2002)]. In this case, the taper allows reflection-

less mode matching between the fundamental modes of the W3 and the W1 waveguides: W3

(straight) ⇒ W1 (bend) ⇒ W3 (straight). With the taper design, one combines both advantages

of low propagation losses on a broad W3 multi-mode waveguide and single-mode transmission at

the bend based on the W1 waveguide. The taper of interest is displayed in Fig. 3.20a, where it is

employed for coupling a ridge waveguide with a W1 waveguide.

By decreasing the radius of the holes that are close to the dielectric channel, it is possible to

(a)

0.0 0.2 0.4 0.6 0.8 1.0
ka/π

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

ω
a/

2π
c

0.0 0.2 0.4 0.6 0.8 1.0
ka/π

(b)

Figure 3.20 (a) SEM micrograph of a W3 → W1 tapering section; courtesy
of Talneau, A., LPN - CNRS, France. (b) Dispersion relation
for a W1-30% waveguide (left panel) and a W3 waveguide
(right panel). Solid (dashed) lines refer to spatially even (odd)
H -modes with respect to the waveguide axis. Photonic-crystal
parameters: ε = 10.5, f = 40%.

go continuously from a W1 to a W3 waveguide. The W1 dispersion relation changes and more

modes appear until the hybrid W1-x waveguide becomes W3. The notation W1-x refers to a

hybrid W1 waveguide, where the holes close to the dielectric defect have the radius reduced by

x% of its nominal value; x = 0% is for the W1 waveguide and x = 100% for the W3. Fig. 3.20b

shows the dispersion relation for W1-30% (left panel) compared to that of a W3 waveguide (right

panel). While the W3 waveguide does not exhibit mono-mode regions, W1-30% is mono-mode for

frequencies between a/λ = 0.251 − 0.270. Therefore, it is not necessary to taper down to W1,
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as W1-30% is already mono-mode for a sufficiently large bandwidth. In order to design the most

compact bend, the straight W1-30% sections have been eliminated, before and after the bend; the

resulting design is similar to a W3 bend with a constriction [Mekis, A., et al. (1998)]. The novel

structure does not guarantee any more single-mode transmission, because the taper is not properly

a W1-30% waveguide. Nevertheless, for sufficiently long tapers, the system is expected to attain

the mono-mode features of W1-30%.

Two-dimensional FDTD simulations demonstrated that high single-mode transmission (> 90% for

ε′′ = 0) is achieved on a narrow wavelength domain around a/λ = 0.2515. The electric field pattern,

for the above bend design, is plotted in Fig. 3.21. The tapers are height unit cells long.

Figure 3.21 Normalized intensity of the electric field through a tapered
sharp bend connecting two W3 waveguides. Parameters:
a/λ = 0.2515, ε = 10.5, f = 40% and ε′′ = 0.

The issue of single-mode transmission has been solved by tapering the W3 waveguide until a

mono-mode frequency domain has been obtained in the proximity of the bend. More precisely,

the whole system composed by the two tapers and the bend can be seen as a resonant cavity,

which couples only with the fundamental guided mode of the W3 waveguide. The fact that the

transmission bandwidth is quite narrow suggests that the resonance has a considerable Q-factor with

respect to the more näıf hole-displacing design. Therefore, when out-of-plane losses are included,
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(a) (b)

Figure 3.22 (a) A one-hole-moved double bend in a W3 waveguide. (b)
Left panel: one-slit bend design; right panel: two-slits bend
design.

the transmission is expected to be strongly reduced, as the field spends more time oscillating

inside the resonant cavity. In conclusion, the proposed design is not much suitable for realistic

applications, since the transmission bandwidth is too narrow and sensitive to out-of-plane losses.

On the other hand, the hole-displacing design provides a broader transmission, which is also more

robust against out-of-plane losses, even though it is far from being single-mode.

The idea is to merge the above positive features in a single bend design, which provides single-mode

transmission, broad bandwidth and low sensitivity to losses.

3.6.4 Slits

A novel bend design is implemented by replacing the bend corners with air slits [Happ, T.,

et al. (2002)]. In fact, bending of light is obtained by means of the photonic band gap, which

guarantees no power escape through the photonic crystal plane. Smoothing the bend with Γ −
M sections allowed to increase the overall transmission level, even though the photonic crystal

boundaries at the bend favor mode coupling and back-reflection. If the Γ−M section is replaced

by a planar mirror, the bending mechanism can be thought as simple ray reflection, rather than

resonant scattering. Assuming that the mirror reflectivity is ideally 100%, a bend design based

on ray reflection should exhibit a bandwidth as large as the photonic band gap. Furthermore, if

ray reflection takes over the role of the resonant cavity, transmission should be also much more
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Figure 3.23 (a) Transmission through a double bend in a W3 waveg-
uide. The black line refers to the two-slits bend design. The
red (blue) line corresponds to the one-slit (three-holes-moved)
bend design. Parameters: ε = 10.5, f = 38% and ε′′ = 0.1.
(b) Normalized intensity of the electric field at a/λ = 0.2487
for the one-slit design.

insensitive to out-of-plane losses. An air slit placed at the bend corner operates like a planar mirror.

In this case, the reflectivity is not properly 100%, because a single slit is not enough to build up a

perfect dielectric mirror, despite of the high dielectric contrast. Better performances are obtained

for two slits. In practice, the planar mirror is made of a Bragg reflector embedded inside the

two-dimensional photonic crystal; its one-dimensional band gap has to match the two-dimensional

band gap of the hosting structure. Also in this case, out-of-plane losses are included by adding ε′′

to the air slits, besides the holes.

The above ideas are tested on a double-bend system, which is more suitable for putting in

evidence the drop of reflection, thanks to the resonant cavity made of the straight sections between

the two bends. Indeed, the bend reflectivity affects the modes of the resonant cavity and yields

stronger or weaker speckles in the transmission spectrum. Fig. 3.22a shows a double bend imple-

mented with the one-hole-displaced design. The transmission is calculated for three bend designs:
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one-hole-displaced (Fig. 3.22), one-slit (Fig. 3.22b, left) and double-slit (Fig. 3.22b, right). The

resulting transmission spectrum are reported in Fig. 3.23a. The slit design is clearly much more

efficient than the hole-displacing design, in terms of transmission level and bandwidth. Notice also

that the one-slit design is still characterized by speckles; on the contrary, the spectrum obtained

with the two-slit design is rather flat within the whole band gap, apart the dip due to the mini-stop

band. This suggests that one slit is not enough for building up a good mirror, while two slits start

to show the benefits of placing a Bragg mirror right at the outer bend corner.

Fig. 3.23b displays the electric field profile for the one-slit bend, with one air hole removed from

the inner corner. The field pattern reveals that single-mode transmission is not yet achieved with

such bend design.

(a)

(b)

Figure 3.24 (a) Slit-taper bend designs. (b) Normalized intensity of the
electric field at a/λ = 0.24 for a slit-taper double bend. Pa-
rameters: ε = 10.5, f = 38% and ε′′ = 0.05.

The slit bend provides high transmission with a large bandwidth, while the taper design yields

single-mode transmission in a very narrow frequency domain. By joining both designs into a

single one, one expects that the resulting bend achieve single-mode transmission without losing in

bandwidth: the bend has to couple with the fundamental guided mode only and, at the same time,
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Figure 3.25 (a) Transmission through a slit-taper double bend in a W3
waveguide. The black (red) line refers to the total transmission
for ε′′ = 0.05 (ε′′ = 0.1). The blue (orange) line corresponds
to the even and odd transmission for ε′′ = 0.1. (b) Poynting
vector as a function of frequency and distance from the waveg-
uide axis for the transmission into spatially even modes. y=1
corresponds to y = 3

√
3/2a. Parameters: ε = 10.5, f = 38%

and ε′′ = 0.1.

the incident wave has to scatter according to the slit mirror.

Fig. 3.24a shows some bend designs, which implement both ideas of taper and slit: the corner is

smoothed with a double slit, while the taper is also made of slits, so that its walls are smoother than

if variable air holes were used. The field profile reported in Fig. 3.24b, clearly demonstrates that

the design allows single-mode transmission. To strengthen this fact, Fig. 3.25 reports the modal

transmission for the double slit-taper bend. The complex waveguide exhibits high and broadband

transmission that averages to 75% for ε′′ = 0.1 and 80% for ε′′ = 0.05. Notice that the transmission

is mostly into spatially even modes. Furthermore, the even transmission appears to be mainly in

the fundamental guided mode, over a wide frequency range,as it can be inferred from the contour

plot of the Poynting vector. Such result is even more impressive if one compares Fig. 3.25 with the

hole-displaced designs [Fig. 3.18 and Fig. 3.19].



WAVE PROPAGATION 166

3.7 Splitters and Combiners

Combiners and splitters represent the upper level fundamental elements for photonic integrated

circuits: a splitter is used to channel the incoming light into two or more separate ports; on the

contrary, a combiner is used to merge the light coming from two or more ports into a single one.

Splitters and combiners are extensively employed for wavelength multiplexing and de-multiplexing

in optical communication [Saleh, B. E. A., et al. (1991)]. There are several kinds of splitters and

combiners, depending on their shape and functionalities. For instance, if the splitter has to redirect

light into either one port either the other one, according to the wavelength of the incident beam,

it operates as an add/drop filter [Fan, S., et al. (1997, 1999)]. Instead, if the splitter divides light

irrespectively of the incident frequency, it is much like a conventional beam splitter in ray optics

[Manolatou, C., et al. (1999)].

For simplicity, consider only three-ports combiners and splitters. In a symmetric splitter the power

is equally distributed into the two exit ports, regardless the frequency; in an asymmetric splitter,

power is channelled only in one of the two ports, according to the wavelength of the incoming

beam. This section deals only with symmetric splitters and combiners obtained by joining three

WN waveguide sections, which are separated from each others by an angle of 120◦ degrees. The

same Y geometry can be seen as a combiner or a splitter, depending on which entry port is chosen.

Fig. 3.26a shows either a combiner (A and C as entry ports) either a splitter (B as entry port).

The cavity created at the junction can be modelled with the same guidelines followed for bends:

hole-displacing or slit. The study is conducted mainly on the structure as a combiner, to be used

in one of the demonstrators of the PCIC project: a multi-wavelength photonic-crystal laser. The

power emitted from the lasers needs to be combined into a single channel, before exiting the device.

Such functionality is implemented by an Y combiner, similar to the one reported in Fig. 3.26a.

As to the symmetric splitter, the objective is to attain 50% transmission in both channels without

reflection at the junction. The combiner is somehow more complicated: besides back-reflection at

the junction, the main issue is represented by the so-called cross-talk, i.e. power coming from one

entry port that enters the junction and is re-channelled toward the other entry port. The cross-

talk may cause interferences between the two entry ports, which is often an unwanted feature.
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Furthermore, both devices are also affected by the same issues encountered while studying the

bend functionality: mode-mixing and out-of-plane losses. Likewise for bends, the choice is to work

with W3 or larger waveguides to reduce as much as possible the amount of out-of-plane losses.

3.7.1 Using W3 Waveguides

The first example of splitter/combiner is made of three W3 waveguide sections connected by a

wedge based on the hole-displacing design, see Fig. 3.26a. First consider the system as a splitter:

a wave is launched into port B and the outgoing power is collected by two detectors placed just

in front of ports A and C. Fig. 3.26b compares the transmission of a splitter with the one of a

bend (the corresponding structures are displayed in the right panels). Notice that the transmission

of the splitter is multiplied by two, that is the sum of the two exit ports5. As done for the bend

spectra of Fig. 3.16 and Fig. 3.17, the calculated curves are slightly stretched to fit better with

the experimental data. Concerning the splitter, the agreement between experiment and FDTD

simulations is not as good as for the bend, specially around a/λ ∼ 0.29. However, the overall

behavior is matched. The dip in the center of the spectrum is due once more to the mini-stop band

in the W3 waveguide. The transmission level of the splitter is quite good, considering that the loss

parameter is ε′′ = 0.1, and it is maximum in the same frequency domain found for the single bend.

Transmission is always mediated by a cavity resonance, which occurs at the wedge, where three

waveguide sections are connected to each others. The basic splitter design is obtained by simply

connecting the waveguides at 120◦ degrees. This yields a cavity with a three-fold symmetry axis.

According to the theorem of scattering matrix theory, it is impossible to make a reflectionless Y

splitter with three-fold symmetry [Manolatou, C., et al. (1999)]. Therefore, to improve transmis-

sion, the hole-displacing bend design is applied to the splitter: holes are moved from the outer

corners and are gathered between two branches, so to form a wedge with two functions: breaking

the three-fold symmetry and smoothing the splitter. The rule reads p = n(n + 1)/2, like for bends.

Fig. 3.27a shows transmission spectra for three designs, corresponding to p = 3 (black), p = 6 (red)

5In the simulations, the power through one port is exactly equal to the power though the other one, because the
splitter is symmetric. This is not perfectly true in the experiment, where small asymmetries could take place.
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(a) (b)

Figure 3.26 (a) Combiner/splitter with W3 waveguide sections. (b) Exper-
imental spectra (black curves) and calculated spectra (gray
curves) for a bend and a splitter respectively (right panels).
The transmission for the splitter has been multiplied by a fac-
tor of 2. The gray areas refer to the mini-stop band region.
The simulations were performed choosing ε = 10.5, f = 35%,
and ε′′ = 0.1. The calculated spectra were slightly stretched
to fit the experiments, yielding an effective dielectric constant
ε=10.4 instead of 10.5. The experimental data are courtesy
of Moosburger, J., University of Würzburg, Germany and
Olivier, S., EPP, France.

and p = 10 (blue). The values are multiplied by two to account for both exit ports. The designs

with 6 or 10 holes displaced are better than the one with p = 3, even though the improvement is

not exceptional. For a deeper insight, modal transmission has also been considered: like for bends,

the smallest mode-mixing is found around a/λ ' 0.24.

More interesting, in view of the demonstrator, is the combiner configuration: the incident power

is launched from port A or port C and is collected at port B and also at port C or port A, re-

spectively. The reason why only one entry port is selected for each simulation is that the cross-talk

would not be detectable otherwise. Moreover, since the system is symmetric with respect to a plane

containing the axis of the waveguide corresponding to port B, it is enough to choose one entry port
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Figure 3.27 (a) Splitter transmission for the system of Fig. 3.26a; i.e.
B → A or B → C. The transmission has been multiplied by
a factor of 2. (b) Combiner transmission for the system of
Fig. 3.26a for three, six and ten holes displaced at the junction.
A → B transmission (top) and A → C transmission (bottom).
Parameters: ε = 10.5, f = 35%, and ε′′ = 0.1.

only, precisely port A. The top panel of Fig. 3.27b shows the transmission spectra for the same

designs studied in Fig. 3.27a, but, this time, used as combiners. As to the transmission through

port B, the maximum value (' 70%) is smaller than for the splitter (' 80%), but in the present

case, this power is channelled into a single port. In an ideal combiner, one expects that the power

is totally transmitted into port B; when it does not happen, it means that there is some cross-talk

between the channels and/or back reflection. The cross-talk of the above mentioned designs is

shown in the bottom panel of Fig. 3.27b. The cross-talk is rather hight, being of the same order

of magnitude of transmission. Nevertheless, the best design is obtained for p = 6, which exhibit a

cross-talk of ' 0.5 in correspondence of the maximum transmission. It must be given for granted

that the transmission is not single-mode.

While the W3 splitters have shown satisfactory performances, which can be easily improved by

employing the slit-taper designs, the combiners that have been considered so far exhibit a cross-talk
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that is too much large to make the device suitable for any application. That is why it is worth to

try other designs, which involve larger waveguides, like W5 or W7. For example, combiners made

of two W3 waveguides going into one W5 or W7 waveguide have been studied. In both cases, the

cross-talk is much reduced with respect to the original W3 designs, even though, the system with

W3 → W7 has been found to have a smaller cross-talk than the one with W3 → W5.

3.7.2 Using W3 and W7 Waveguides
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Figure 3.28 W3 → W7 slit combiner: (a) structure, (b) transmission. The
solid (dashed) line correspond to A → B (A → C) transmis-
sion. Parameters: ε = 10.5, f = 35%, and ε′′ = 0.1.

For the above reasons, the most promising combiner seems to be the one made of two W3

waveguides connected to a W7 waveguide. Instead of using the conventional hole-displacing design,

the combiner of Fig. 3.28a is proposed with a slit wedge at the waveguides junction [Happ, T., et

al. (2002)]. The corresponding transmission and cross-talk are shown in Fig. 3.28b. Notice that the

overall transmission is higher than for the W3 designs of Fig. 3.27b, with a maximum around 85%.

Also, the curve is rather flat in the whole band gap domain, in accordance to the ray-reflection

mechanism discussed in Sec. 3.6.4. The cross-talk is very small, with an average value of -27 dB.

With these performances, it is reasonable to think of a photonic-crystal demonstrator that makes
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Figure 3.29 SEM micrograph of the combiner used for the
multi-wavelength photonic crystal laser; courtesy of Happ, T.,
University of Würzburg, Germany.

use of such functionality.

3.7.3 Demonstrator

The aim of the demonstrator is to obtain combined operation of two single-mode lasers with a

wavelength tunability of 20nm around 1.55µm, with a 100GHz (∼ 0.8nm) channel spacing. Fabri-

cation, characterization and the laser design have been undertaken at the University of Würzburg,

one of the PCIC partners, in the group of prof. Forchel A.. In this section, the discussion is limited

to the combiner design, which is one of the objectives of the present work. Fig. 3.29 shows a SEM

micrographs of one of the combiners used in the first trial designs. At the left, notice the two

overgrown ridge waveguides, which form the laser cavity. The cavities are of the order of 650µm

long and 30µm far from each others, which is already a critical distance if one considers the thermal

cross-talk. Single-mode lasing is achieved for both cavities at a threshold current around 60mA.

Between lasers and combiner, a two-row photonic-crystal mirror prevents the power reflected by

the combiner from re-entering the laser cavity. The combiner entry ports are tapered to favor

coupling with the incident laser light. In the sample shown in Fig. 3.29, the combiner is made of

two W3 waveguides connected to a W5 waveguide. The whole system is developed using the InP

technology. Of course, modelling the whole structure is too much demanding. At this stage, the

simulations have been carried out only on separate parts: the laser cavity or the combiner.

The role of the combiner is to channel two laser sources into a single beam. The major requirements
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are thus high transmission, with low sensitivity to out-of-plane losses, low cross-talk and, possibly,

single-mode transmission. Several designs are simulated: the W3 → W5 design with hole displaced

(the one of Fig. 3.29), a similar one ending with a W7 waveguide. Then the slit-taper designs,

again ending with W5 or W7 waveguides and, finally a W3 → W3 designs, which is aimed to

achieve single mode transmission. The nomenclature for these designs is reported in Tab. 3.1. For

clarity, the designs W3W7s and W3W3s are displayed in Fig. 3.30. Notice the different junction

for W3W7s and W3W3s. The W3W5s design is equal to the W3W7s with W5 in place of W7.

Fig. 3.31a compares the transmission performances for the various designs of Tab. 3.1, while

Waveguides Design Acronym
W3 → W7 hole displaced W3W7b
W3 → W5 hole displaced W3W5b
W3 → W7 slit-taper W3W7s
W3 → W5 slit-taper W3W5s
W3 → W3 slit-taper W3W3s

Table 3.1 Combiner designs for the demonstrator.

(a) W3→W7 (b) W3→W3

Figure 3.30 Combiner slit designs: (a) W3W7s, (b) W3W3s.

Fig. 3.31b gives the cross-talk in terms of transmission into the wrong port. It is apparent that

the best designs are W3W7s and W3W3s. Since the W3W5b combiner, the one employed in the

experiment, is not the optimal configuration as far as cross-talk is concerned, it is expected that
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Figure 3.31 Transmission (a) and cross-talk (b) for the demonstrator com-
biners. Parameters: ε = 10.5, f = 38%, and ε′′ = 0.1.

using W3W7s and W3W3s combiners will improve the device performances, as suggested in the

previous sections. The transmission spectrum for W3W7s and W3W3s shows a flat profile that

averages around 80%. Notice that the slit design has be used for the combiner and for the bends

also, see Fig. 3.30. Concerning the cross-talk, while the combiners with displaced holes exhibit a

mean value of ' -17dB, the ones with slits drops the mean value down to ' -27dB. According to

laser books, -30dB in the laser cavity is a good starting value. Considering that, above a/λ ' 0.27,

there are frequency windows where the cross-talk is below -30dB and that the laser cavity is pro-

tected by the photonic-crystal mirror, the present design should guarantee a cross-talk below the

-30dB threshold.

If 80% transmission, in the presence of out-of-plane losses, and a -30dB cross-talk represents a

fair performance, what about modal transmission? By focussing only on the best designs, W3W7s

and W3W3s, the above question can be answered by performing the modal analysis discussed

in Sec. 3.6.2. Thanks to the slit-taper design for the bends, transmission is single-mode up to

the combiner’s junction. Thereafter, for the W3W7s design, the W3 fundamental mode is lost

in the cavity and what enters the final W7 branch is a superposition of several guided modes.
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Figure 3.32 W3W3s combiner design: even/odd transmission. Parameters:
ε = 10.5, f = 38%, and ε′′ = 0.1.

The consequence is that coupling of the W7 branch to a tapered optical fiber or any other probe

device is reduced, proportionally to mode mixing. Such behavior can be guessed by looking at

Fig. 3.32, which compares the even/odd transmission for W3W7s and W3W3s. The W3W7s

combiner “loses” 50% of the transmitted power into spatially odd modes. However, the objective

is to attain transmission only into the fundamental mode. The W3W3s combiner, instead,

Figure 3.33 W3W3s combiner design: field pattern for a/λ = 0.287. Pa-
rameters: ε = 10.5, f = 38%, and ε′′ = 0.1.

exhibits nearly 100% transmission into spatially even modes, as displayed in Fig. 3.32. Again, this
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is due to the slit-taper design at the junction and to the row of air holes that forms two parallel

W3 waveguides. The field proceeds very much like as if it were guided in a W3 double bend, like in

Fig. 3.24b. Indeed, the field plot, depicted in Fig. 3.33 for a/λ = 0.287, shows nearly single-mode

transmission and small cross-talk. It is expected that the same happens also for other frequencies,

since the Poynting vector associated to spatially even modes (not shown here) yields a profile similar

to the one of Fig. 3.25b.

It is obvious that more refinements are still necessary, but the present results look promising for

realistic application of such device. . . and this is only one of the possibilities offered by photonic

crystals!
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CONCLUSIONS AND PERSPECTIVES

The study of semiconductor-based two-dimensional photonic crystals has been organized into

three main parts: photonic bands, optical properties and wave propagation. The first part is fo-

cussed on the discussion of the photonic eigenstates in photonic-band-gap materials, where the

photonic band picture relies on the periodicity of the dielectric function and on the Bloch theo-

rem. The plane-wave expansion method is introduced as the standard technique for computing the

photonic bands of bulk photonic crystals. More insight on the photonic bands is offered by the

symmetry analysis of the eigenstates. Indeed, the symmetry properties of photonic crystals can

be treated within the group theory formalism: each state is classified according to an irreducible

representation of the associated small point group. Furthermore, the use of symmetry may help

in reducing the complexity of Maxwell’s equations or the computational wave-vector domain; for

example, the distinction into E -modes and H -modes in two-dimensional photonic crystals or the

determination of the irreducible Brillouin zone.

Two-dimensional photonic-crystal slabs represent a trade-off between the two- and three-dimensional

control of light, because the electromagnetic field is vertically confined by means of total-internal

reflection, while in-plane confinement relies on the photonic-band-gap property. The states of

photonic-crystal slabs can be divided into guided modes, below the light line, and into quasi-guided

mode, or guided resonances, above the light line. Quasi-guided modes are characterized by in-

trinsic propagation losses due to the patterned dielectric constant that allows coupling to the

external field; for this reason, they are also called out-of-plane diffraction losses. The existence

of guided or quasi-guided modes depends on the waveguide geometry. It is found that strong-

confinement waveguides, like the air bridge, support both truly guided and quasi-guided modes.

On the contrary, weak-confinement systems, like GaAs-based or InP-based heterostructures, ex-

hibit only quasi-guided modes. For these reasons, there exists a dispute between employing weak-
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or strong-confinement waveguides for wave propagation in photonic integrated circuits.

The photon dispersion relation for both guided and quasi-guided modes can be computed by ex-

panding the electromagnetic field on the basis set of the guided modes of an effective waveguide,

defined by the spatial average of εj(x) in each layer j. This method, proposed by Andreani,

L. C. (2002), is particularly interesting for its speed with respect to the super-cell method [John-

son, S. G., et al. (1999)] or the three-dimensional finite-difference time-domain method [Chutinan,

A., et al. (2000)], and for the way guided resonances are treated. It turns out that air-bridge

photonic crystals exhibit modes with a strong blue-shift, due to vertical confinement in the di-

electric membrane. No complete band gap is found for such system. Moreover, as soon as the

width of the membrane d/a is larger than ∼ 0.5, the onset of a higher order waveguide mode closes

the photonic band gap. As regards weak-confinement photonic-crystal slabs, the band structure

is not much different from the ideal two-dimensional case and the cut-off of higher order modes

occurs for much larger thicknesses of the core layer than for the air bridge. Thus, the conclusion

is that strong-confinement systems must be designed with thin core layers, in order to preserve a

wide band gap; on the contrary, weak-confinement photonic crystals have better features for thick

(d/a ' 1.0) core layers, because their band structure approaches the two-dimensional limit, yet

providing vertical control of light propagation. However, a comprehensive analysis of these systems

requires the study of radiation losses. This is carried out in the second part of this work, where

the coupling to the external field is treated within the framework of the variable-angle-reflectance

technique [Astratov, V. N., et al. A (1999)].

First of all, it is shown that the dispersion relation of quasi-guided modes can be accurately

measured by looking at the anomalies in surface reflectance, as first proposed by Astratov, V. N., et

al. A (1999). The same procedure is numerically implemented with the scattering-matrix method

[Whittaker, D. M., et al. (1999)]. The variable-angle-reflectance technique has been also applied

to deep two-dimensional photonic crystals, namely macro-porous silicon, for extracting the two-

dimensional photonic bands. In this case, the anomalies in reflectance show a unique line-shape,

due to the onset of diffraction modes in the crystal. Indeed, the discontinuity in reflectance can be

related to a one-dimensional critical point in the photonic density of states of the crystal. This is

because the modes of two-dimensional photonic crystals retain an off-plane dispersion, while the in-
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plane Bloch vector is fixed. Two-dimensional photonic-crystal slabs show anomalies in reflectance

that may have complicated line-shapes: minima, maxima and dispersion-like. This fact stems from

an interference effect between Lorentzian resonances with a continuum, which can be referred to a

Fano resonance [Fano, U., (1961); Fan, S., et al. (2002)].

The excitation of a quasi-guided mode, which occurs when its frequency and Bloch vector match

those of the incident wave, is found to obey precise selection rules that can be directly derived from

the symmetry properties of the incident wave and of the photonic state under consideration. To

this purpose, a group theory analysis is fundamental for understanding such rules: a photonic band

can appear in reflectance only if it has the same symmetry of the incident electromagnetic field. In

particular, a TE- (TM-) polarized wave couples only to modes that are odd (even) with respect to

the plane of incidence, if such plane is also a mirror plane for the crystal. Also, at normal incidence,

most of the anomalies vanish, except the ones associated to Γ±5 states; indeed, Γ+
5 (Γ−5 ) corresponds

to doubly degenerate modes with the symmetry of the xy component of a pseudovector (vector) as

for the H (E) xy components of the incident field, in accordance with the above statement.

The application of the variable-angle-reflectance technique to two samples fabricated starting from

GaAs/AlGaAs heterostructures shows that the width of the resonances, which is proportional to the

losses, depends on the air fraction of the dielectric pattern. This suggests a systematic analysis of the

resonance line-width as a function of the main structure parameters: index contrast, core thickness,

hole radius and etch depth. The study is aimed to accomplish the study of the guided resonances

in photonic-crystal slabs, with emphasis on sorting out the best waveguide design to attain low-

loss propagation. By looking at a sample resonance, it is found that strong-confinement systems

exhibit much higher losses than the weak-confinement ones. The same result can be assumed for

truly guided modes that impinges a bend or a resonator. Thus, the total balance between guided

modes in strong-confinement systems and quasi-guided modes in weak-confinement systems reads:

low-losses always for the latter case or high-losses localized at bends and/or resonators for the

former? Clearly, the final answer is not easy; see for example the feature issue J. Opt. Soc. Am. B,

19 (9) for a collection of papers on the subject.

As the core thickness increases, out-of-plane losses decrease for both strong- and weak-confinement

photonic-crystal slabs. However, as already mentioned, the band gap in air-bridge-like photonic
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crystals is closed by the onset of higher order waveguide modes as soon as the core thickness d/a is

greater than ∼ 0.5. Moreover, the photonic band structure strongly depends on the core thickness,

contrary to what happens for weak-confinement waveguides. These findings favor the choice of

weak-confinement heterostructures for the implementation of photonic circuitry. A more complete

study of the structure parameters, focussed on GaAs-based photonic crystals, reveals that out-of-

plane losses increase with the hole radius and decrease with the etch depth, up to a critical value,

where losses equal the intrinsic limit given by infinite etch depth. Putting all these information

together, the best design for a low-index-contrast semiconductor-based two-dimensional photonic

crystal could be an heterostructure with core thickness d ' a, patterned with a triangular lattice

of holes with radius r ' 0.28a− 0.32a, up to an etch depth h ≥ 3a. The resulting structure can be

used as the base for devising building blocks for photonic integrated circuits. Indeed, the third and

last part is devoted to the study of wave propagation in such photonic elements.

The “wafer” structure, employed for designing photonic-crystal building blocks, is either a

GaAs-based or an InP-based photonic-crystal slab, both providing weak vertical confinement. This

feature allows to treat the problem within a two-dimensional approximation: the vertical con-

finement effect is accounted for by substituting the nominal dielectric functions with the effective

dielectric constant of the fundamental waveguide mode (the material dispersion and the effective

constant dispersion are both neglected); out-of-plane losses are included by a phenomenological

imaginary dielectric constant [Benisty, H., et al. (2000)]. In this framework, wave propagation is

numerically studied using a two-dimensional finite-difference time-domain method.

The basic element of a photonic circuit is, of course, the straight channel waveguide. A chan-

nel waveguide can be easily obtained by creating a linear defect in the two-dimensional pattern.

Among the various possibilities [Johnson, S. G., et al. (2000)], the best choice is represented by

the so-called WN waveguide, which is obtained by removing N adjacent rows of holes along the

Γ − K direction of a triangular lattice. The resulting systems support both index-guided and

photonic-band-gap-guided modes. The idea is to work with index-guided modes, because they are

subject to much smaller propagation losses than band-gap-guided modes and also than bulk Bloch

states. Thus, the photonic band gap is necessary only when the guided mode encounters a bend

or a resonator, so that losses are as small as possible. It is worth to mention that the corrugated
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sides of the linear waveguide cause backward coupling, which is featured by mini-gaps, also known

as mini-stop bands, in the guided-mode dispersion relation.

Depending on the width of the dielectric channel and on the extent of the photonic band gap,

the waveguide can be mono-mode or multi-mode. This property is particularly critical for bent

waveguides, where broken symmetries give rise to modal-mixing that may preclude component cas-

cading. On the other hand, a mono-mode, thus narrow, waveguide is subject to higher losses. A

fair compromise is found by employing W3 (three rows removed) multi-mode waveguides in place of

single-mode W1 (one row removed): they are sufficiently large to pull down propagation losses and

have yet not too many guided modes, so that bend modelling to pursue single-mode transmission

can be feasible. Several attempts have been made for achieving single-mode transmission: bend

smoothing by hole displacement [Moosburger, J., et al. (2001); Talneau, A., et al. A (2002);

Benisty, H., et al. B (2002)], waveguide tapering [Talneau, A., et al. B (2002)] and, finally,

slit bends [Happ, T., et al. (2002)]. Bend smoothed by hole displacement provide better trans-

mission levels and less sensitivity to losses with respect to a sharp bend, but not yet single-mode

transmission. It is noticeable that a comparison with experimental data shows good agreement

with the finite-difference time-domain simulations. This proves the validity of the two-dimensional

approximation and the accuracy of the experimental characterization. The tapered bend is based

on the idea of having a single-mode cavity at the bend corner, which is able to couple only to

the fundamental waveguide mode. Though this design attains single-mode transmission, the trans-

mission level is too much sensitive to losses and the band-width is too narrow. The slit design,

instead, exploits a one-dimensional Bragg mirror placed at the bend corner: the mirror builds up a

ray-reflection-like mechanism for bending of light, in place of the usual resonant scattering induced

by the cavity formed by the bend itself. This yields a nice high and flat transmission. Finally,

efficient single-mode transmission is achieved by using tapered slits at the bend.

The same ideas can be applied to combiners and splitters. In particular, efforts are spent in the

design of a photonic-crystal combiner for a multi-wavelength-source laser. The device is part of the

demonstrators of the EU IST Project PCIC. The major issue is to minimize the cross-talk below

-30dB, to avoid interference effects between the two active cavities. By using the slit-taper design

for both bends and junction, the cross-talk is reduced below -30dB for a fair band-width, yet pre-
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serving high and single-mode transmission. Such device is also under experimental characterization.

In conclusion, the hope is that this work offer some interesting results on the physics of

semiconductor-based photonic-crystals, in particular, as regards the weak-confinement configura-

tion. Though the study covers a wide set of aspects, from the photonic band structure to wave

propagation, there are many attracting perspectives for continuing and extending the present anal-

ysis. First of all, a better assessment of photonic-crystal slabs requires a direct calculation of

out-of-plane losses for both bulk states and defect states. This is already well underway in collab-

oration with Andreani L. C., who extended his numerical method to compute out-of-plane losses

using the perturbation theory formalism and Fermi’s golden rule. Results for W1 waveguides in air

bridge photonic crystals have been submitted for publication [Andreani, L. C., et al. B (2002)].

In the same context, it would be interesting to extend the method to photonic-crystal slabs having

more than three layers, including air and substrate. This is rather important for studying weak-

confinement photonic-crystals slabs, where the heterostructure is often composed by more layers

than the air bridge. Furthermore, the above extension would allow to study the effect of finite

etch-depth on the photonic band structure and on propagation losses, more quantitatively than

what has been done with the scattering-matrix method here. Lastly, the numerical technique could

be also applied to the analysis of point defects in photonic-crystal slabs. Indeed, such research

could help to settle the controversy between using strong- or weak-confinement photonic-crystal

slabs for making photonic integrated circuits.

Concerning wave propagation, the next goal is to accomplish the modal analysis by projecting

the even modes on the fundamental guided mode. A similar approach could be exploited with

a three-dimensional finite-difference time-domain method for studying the polarization mixing in

asymmetric photonic-crystal slabs, like silicon-on-insulator for example. . . and the list could con-

tinue with many other nice things to do. After all, there is no reason to get bored while working

on photonic crystals!
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Pertsch T., Zentgraf T.,Peschel U.,Bräuer A., and Lederer F. (2002). Anomalous Refraction and

Diffraction in Discrete Optical Systems. Physical Review Letters, 88 (9), 093901(4).



197

Peyrade D., Chen Y., Talneau A., Patrini M., Galli M., Marabelli F., Agio M., Andreani L. C.,

Silberstein E., Lalanne Ph. (2002). Fabrication and optical measurements of silicon on insulator

photonic nanostructures. Microelectronic Engineering, 61-62, 529–536.

Pottier P., Seassal C., Letartre X., Leclerq J. L., Viktorovitch P., Cassagne D., and Jouanin C.

(1999). Triangular and Hexagonal High Q-Factor 2-D Photonic Bandgap Cavities on III-V Sus-

pended Membranes. Journal of Lightwave Technology, 17 (11), 2058–2062.

Qiu M., and He S. (2000). A nonorthogonal finite-difference time-domain method for computing

the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions.

Journal of Applied Physics, 87 (12), 8268–8275.

Qiu M., and He S. (2000). Numerical method for computing defect modes in two-dimensional

photonic crystals with dielctric or metallic inclusions. Physical Review B, 61 (19), 12871–12876.

Qiu M. (2002). Effective index method for heterostructure-slab-waveguide-based two-dimensional

photonic crystals. Applied Physics Letters, 81 (7), 1163–1165.

Robertson W. M., Arjavalingam G., Meade R. D., Brommer K. D., Rappe A. M., and Joannopoulos

J. D. (1993). Measurement of the photon dispersion relation in two-dimensional ordered dielectric

arrays. Journal of the Optical Society of America B, 10 (2), 322–327.

Robertson W. M., Arjavalingam G., Meade R. D., Brommer K. D., Rappe A. M., and Joannopoulos

J. D. (1993). Observation of surface photons on periodic dielectric arrays. Optics Letters, 18 (7),

528–530.

Romanato F., Businaro L., Di Fabrizio E., Passaseo A., De Vittorio M., Cingolani R., Patrini M.,

Galli M., Bajoni D., and Andreani L. C. (2002). Fabrication by means of X-Ray lithography of

two-dimensional GaAs/AlGaAs photonic crystals with unconventional unit cell. Nanotechnology,

13 (8), 644-652.



198

Rowson S., Chelnokov A., and Lourtioz J.-M. (1999). Two-Dimensional Photonic Crystals in Macro-

porous Silicon: From Mid-Infrared (10 µm) to Telecommunication Wavelengths (1.3-1.5 µm).

Journal of Lightwave Technology, 17 (11), 1989–1995.

Ryu H.-Y., Kim S.-H., Park H.-G., Hwang J.-K. Lee Y.-H., and Kim J.-S. (2002). Square-lattice

photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode. Applied

Physics Letters, 80 (21), 3883–3885.

Sakoda K. (1995). Optical transmittance of a two-dimensional triangular photonic lattice. Physical

Review B, 51 (7), 4672–4675; Transmittance and Bragg reflectivity of two-dimensional photonic

lattices. Physical Review B, 52 (12), 8992–9002.

Sakoda K. (2001). Optical Properties of Photonic Crystals. Berlin: Springer.

Saleh B. E. A., and Teich M. C. (1991). Fundamentals of Photonics. New York: John Wiley and

Sons Inc.

Schilling J., Birner A., Müller F., Wehrspohn R. B., Hillebrand R., Gösele U., Busch K., John S.,
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