O UTLI N ES of Time-Resolved Nonlinear Spectroscopies

Prerequisites:

 Linear spectroscopies: A = c! | Lambert Beer law
e Shrodinger equation

* Born-Oppenheimer Approximation

* Electronic and vibrational molecular levels

We will go through:

* Wavefuction of a damped harmonic oscillator

* Linear and Non Linear Polarization terms in a two level system

* The correlation function

* Natural linewidth and broadening effects on linear spectra: the dephasing.
* Density matrix operator: a statistic ensemble

* Exempla of Time-Resolved Non-Linear experiments
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Scopy= to observe, to see light — matter interaction
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Incoherent light sources
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Coherent light sources

e Collimated light: spatial coherence length up to hundred of kilometers
* Very small focus

* Monochromatic emission (L cavity)

* Polarized light

* High intensity
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Continuous laser * Pulsed laser *
Gas laser: He-Ne 632 nm Dye lasers: large gain bandwidth
CO, 10 pum (far-IR) at different wavelengths;
Solid state laser: diode pumped lasers; Solid state laser: Ti:Saaround 800 nm.

Nd:YAG
Nd:YVO 1064 nm->532nm.

Y \t\igh rate

slow rate

*light amplification by stimulated
emission of radiation




Focused laser = strong perturbation on matter
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Elementary charge: q=1.6 x 101°C by a H* atom in water (acid solution) or a
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Sun light, : h"
colour vision weak perturbation
Uv-Vis absorbance ...
0009® @ 900

Redistribution of population on quantum states of the system

To play with light (change frequency, phase, polarization...) you need non-linear optic effects:

The external electric field couples to the molecular electric field
Quantum states of the system are (temporally) mixed up.

The superposition of states A
“answers you” (response signal) m/y
according to “your question” (probe) )/y

strong perturbation 7;—‘\5)"7—15""}




Electic Field

m——— Mg}[Hm EM field — matter
APPROXIMATIONS:

Matter = non-magnetic homogeneous dielectric, with no free-charges and internal currents.

1. We neglect the magnetic part of the EM field.

2. We treat light and matter in the semi-classical approximation.

3. We make use of the moment dipole approximation.

1st Approx.: NEGLECT MIAGNETIC FIELD: because you are operating on the electric
dipole moment of a (biological) molecule. In some cases you cannot neglect the
magnetic contibution and you have to consider both electric and magnetic dipole

moments, i.e. lanthanide solid state samples.



2nd Approx.: SEMI-CLASSICAL APPROX: used wavelengths are much longer than
molecular dimensions.

#>>d

Light EM field classical mechanics
Matter > molecule | guantum mechanics

3rd Approx.: DIPOLE APPROX: the spatial oscillating part of the electric field is neglected.
Only the time oscillating part is considered, which induces a separation of charge on the
molecule at a first approx. considered as a dipole.
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OPTICAL SPECTROSCOPIESz {| }M!jf 4} |pa~

Franck-Condon principle —— Absorption is a vertical transition where there is the
largest overlap between vibrational wavefunctions

Born-Oppheneimer approximation —— Nuclear and electronic transition are on
different energy and time-scales so that they
can be considered independent from each
other

N.B.:in optical spectroscopies (UV-VIS-IR) only valence electrons are involved. External electrons
react “istantaneously” (10-1>-101¢ s) to applied E, while massive nuclea are stuck.
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Horizontal transitions:

Internal Conversion
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(out of the B.O. approx — Fermi Golden rule) (B.O. approx — Einstein coefficients)

Vertical transitions

Absorbance 10-16-101>s
85 Fluorescence 10-12-10% s
Phosphoresc. 106-1s
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Einstein coefficients for radiative transitions
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Reminder on the FERIM| Golden rule:

Bohr frequency condition
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Energia

Molecular orbital (MO=LCAO) transitions

Molecular orbital simmetry: ¢ 4 2.
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Electronic selection rules

1. Induced dipole moment ¢ Z D

2. Spin conservation before and after photon arrival:¢¢... $ D
3. Transitions within a shell (p,d..) are forbidden: * %$ +/-1

6R $ 8 €. € R9—<Z [D Transition moment

Transitions:

e ' transitions of C-C, C-H saturated bond (deep UV)
. insaturated bonds or conjugated system (VIS)

z

Y4
Y4
Y4

. "typical in the presence of lone pair of ethero atoms C=0, N=N, C=N...
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