Hierarchy of representations:

Shroedinger
$$\longrightarrow \psi(t)$$
 Evolution of a pure state Liouville – Von Neumann $\longrightarrow [H,\rho]$ Evolution of a statistic ensemble Liouville $\longrightarrow L$, Γ Evolution including damping

How to consider a time evolving system under a perturbation

$$i\hbar \frac{d|\psi_S(t)>}{dt} = H|\psi_S(t)>$$
 Time dependent Shroedinger equation Time dependence is in the wavefunction

$$\psi(\mathbf{r},\mathbf{t}) = \varphi(r)e^{-i\omega t}$$
 $\omega = \frac{E}{\hbar}$; $H\varphi = E\varphi$

N.B.: As any wave, ψ is a function of position and time. Time dependence is an oscillating constant term that does not change the probability ψ^2 . Frequency of oscillation ω results from the solution of the stationary Shroedinger equation.

We can define a new operator to cancel out the time dependence on ψ and let the function propagates free over time:

$$\psi(t) = e^{-iH_0(t-t_0)/\hbar} \, \psi(t_0)$$

$$U(t, t_0) = e^{-iH_0(t-t_0)/\hbar}$$

Free evolution operator or propagator

The system doesn't change under the static hamiltonian H_0 , it only translates in time.

Properties:

- Hermitian operator
- Composition property:

$$U(t, t_0) = U(t, t_1)U(t_1, t_0)$$
 $t_0 \to t_1 \to t$

Time reversibility:

$$U^{-1}(t_0,t) = U(t,t_0)$$

What if H is time dependent:

$$U(t,t_0) = exp\left[-\frac{i}{\hbar} \int_{t_0}^{t} \widehat{H}(t')dt'\right] \qquad e^{-x} = 1 - x + \frac{1}{2!}x^2 - \frac{1}{3!}x^3 + \cdots$$

$$\begin{split} &U(t,t_0)\\ &=1-\frac{i}{\hbar}\int_{t_0}^t\!\!\widehat{H}(\tau)d\tau+\left(-\frac{i}{\hbar}\right)^2\int_{t_0}^t\!d\tau\int_{t_0}^\tau\!\!d\tau'\widehat{H}(\tau)\widehat{H}(\tau')+\left(-\frac{i}{\hbar}\right)^3\int_{t_0}^t\!d\tau\int_{t_0}^\tau\!\!d\tau'\int_{t_0}^{\tau''}\!\!d\tau''\widehat{H}(\tau)\widehat{H}(\tau'')+\cdots \end{split}$$

$$t>\tau>\tau'>\tau''>\cdots>t_0$$
 Time ordering:

factorial terms omitted because of time ordering permutating terms not possible

Interaction with EM field: to describe an evolving system under a perturbation we need time evolution on both ψ and H:

Perturbation theory at 1st order

$$\psi(t) H(t) = H_0 + V(t)$$

A small perturbation allows for conservation of the basis set |n> of the unperturbed hamiltonian

INTERACTION PICTURE:

to divide the stationary part of hamiltonian from following EM perturbations on the system, we define ψ_1 :

If we apply the free-propagator, we can rewrite $\psi_{\rm S}$ so that we are solidal to its constant oscillating part.

Time dependence is only due to the perturbating part V(t)

Time evolution in the interaction picture:

$$\begin{split} i\hbar\frac{d|\psi_{S}>}{dt} &= H(t)|\psi_{S}> \\ i\hbar\frac{d}{dt}(U_{0}(t,t_{0})|\psi_{I}>) &= [H_{0}+V(t)]\,U_{0}(t,t_{0})|\psi_{I}> \\ \frac{dU_{0}}{dt}|\psi_{I}> &+ \frac{d|\psi_{I}>}{dt}U_{0} = -\frac{i}{\hbar}[H_{0}+V(t)]\,U_{0}|\psi_{I}> \\ &-\frac{i}{\hbar}H_{0}V_{0}|\psi_{I}> &+ \frac{d|\psi_{I}>}{dt}U_{0} = -\frac{i}{\hbar}[H_{0}+V(t)]\,U_{0}|\psi_{I}> \end{split}$$

$$\frac{d|\psi_I>}{dt} = -\frac{i}{\hbar} \underline{U_0^{\dagger} V(t) U_0} |\psi_I>$$

$$i\hbar \frac{d|\psi_I>}{dt} = VI(t) |\psi_I>$$

Formally indentical to shroedinger time dependent equation

$$V_{\rm i} = {\rm EM\ field\ interactions}$$

$$t_0 \to \tau_1 \to \tau_2 \to \cdots \to \tau_{n-1} \to \tau_n \to t$$

During the free-evolution propagator U_0 the system rearranges and relaxes.

That evolution operator can be applied on a pure state ψ as well as on a statistics ensemble ho.

 ψ :

$$|\psi(t)> = |\psi(t_0)> + \sum_{n=1}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t d\tau_n \int_{t_0}^{\tau_n} d\tau_{n-1} \dots \int_{t_0}^{\tau_2} d\tau_1 U_0(t,\tau_n) V(\tau_n) U_0(\tau_n\tau_{n-1}) V(\tau_{n-1}) \dots$$

...
$$U_0(\tau_2, \tau_1)V(\tau_1)U_0(\tau_1, t_0)|\psi(t_0)>$$

 $\boldsymbol{\rho}$:

$$|\psi(t) > <\psi(t)| = U_0(t, t_0) |\psi_I(t) > <\psi_I(t)| U_0^{\dagger}(t, t_0)$$

$$\rho(t) = U_0(t, t_0) \cdot \rho_I(t) \cdot U_0^{\dagger}(t, t_0)$$

$$\frac{\partial \hat{\rho}_I}{\partial t} = -\frac{i}{\hbar} [\widehat{H}_I, \widehat{\rho}_I]$$

$$\rho(t) = \rho(t_0) + \sum_{n=1}^{\infty} \left(-\frac{i}{\hbar} \right)^n \int_{t_0}^t d\tau_n \int_{t_0}^{\tau_n} d\tau_{n-1} \dots \int_{t_0}^{\tau_2} d\tau_1 U_0(t, t_0) \cdot \left[V_I(\tau_n), \dots [V_I(\tau_1), \rho(t_0)] \right] \cdot U_0^{\dagger}(t, t_0)$$

$$V_I = \mu_I \cdot E$$

The non-linear response function $S^{(n)}$ is the convolution of N electric fields with the non-linear response $R^{(n)}$ of the system:

$$S^{(n)}(t) = E_n E_{n-1} \dots E_1 \otimes R^{(n)}(t)$$
$$R^{(n)}(t) = \langle \mu_t [\mu_n, \dots [\mu_1, \rho(-\infty)]] \rangle$$

Take notice:

$$\bar{P}(t) = P^{(0)}(t) + P^{(1)}(t) + P^{(2)}(t) + P^{(3)}(t) + \cdots$$
 Time domain before perturbation

$$\bar{P}(\omega) = \chi E + \chi^2 E E + \chi^3 E E E + \cdots$$
 Frequency domain

Analyzing the system response function $R^{(n)}(t)$:

$$R^{(n)}(t) = \langle \mu_t [\mu_n, \dots [\mu_1, \rho(-\infty)]] \rangle$$

Linear term:

t = observation time
$$\rho(-\infty) = \rho_0$$

$$\begin{split} R^{(1)}(t) &= \langle \mu_t[\mu_1, \rho_0] \rangle \\ &= \langle \mu_t \mu_1 \rho_0 \rangle - \langle \mu_t \rho_0 \mu_1 \rangle \\ &= \langle \mu_t \mu_1 \rho_0 \rangle - \langle \rho_0 \mu_1 \mu_t \rangle \quad \text{invariance of the trace to permutations} \\ &= \langle \mu_t \mu_1 \rho_0 \rangle - \langle \mu_t \mu_1 \rho_0 \rangle^* \\ &= R_1 - R_1^* \end{split}$$

$$R_{1} - R_{1c.c.} = \langle \mu_{t} \mu_{1} \rho_{0} \rangle - \langle \mu_{t} \mu_{1} \rho_{0} \rangle^{*}$$

$$Tr\{\mu_{t} \mu_{t} | \mu > < \mu_{t} \}\}$$

Feynman diagrams:

- Two linear terms in the response function
- One operates on the bra and one on the ket
- Both define the same process

Only the process with the emission from the ket is considered!!

- Time evolution is represented by vertical arrows from bottom to top
- side arrows represent interactions with the electric field
- The last arrow rises from the system and represents the signal: it restores a population state
- Between interactions there is free evolution of the system described by super-operator $\widehat{G}(t) = UAU^{\dagger}$

 $E_1=e^{ikr+i\omega t}$ Each field interacts only for a specific wave vector \vec{k} and frequency ω

$$E_n = e^{ikr+i\omega t} + k, +\omega$$

$$E_n^* = e^{-ikr-i\omega t} - k, -\omega$$

The pump - probe

Feynman and ladder diagrams:

Third order term:

$$R^{(3)}(t) = \langle \mu_t [\mu_3, [\mu_2, [\mu_1, \rho_0]]] \rangle$$

 2^n terms and 2^{n-1} independent terms

$$+\langle \mu_{t}\mu_{3}\mu_{2}\mu_{1}\rho_{0}\rangle \Rightarrow R_{1} \qquad -\langle \mu_{t}\mu_{3}\mu_{2}\mu_{1}\rho_{0}\rangle^{*} \Rightarrow R_{1}^{*}$$

$$+\langle \mu_{t}\mu_{3}\rho_{0}\mu_{1}\mu_{2}\rangle \Rightarrow R_{2} \qquad -\langle \mu_{t}\mu_{3}\rho_{0}\mu_{1}\mu_{2}\rangle^{*} \Rightarrow R_{2}^{*}$$

$$+\langle \mu_{t}\mu_{2}\rho_{0}\mu_{1}\mu_{3}\rangle \Rightarrow R_{3} \qquad -\langle \mu_{t}\mu_{2}\rho_{0}\mu_{1}\mu_{3}\rangle^{*} \Rightarrow R_{3}^{*}$$

$$+\langle \mu_{t}\mu_{1}\rho_{0}\mu_{2}\mu_{3}\rangle \Rightarrow R_{4} \qquad -\langle \mu_{t}\mu_{1}\rho_{0}\mu_{2}\mu_{3}\rangle^{*} \Rightarrow R_{4}^{*}$$

