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Learning objectives: 

• In this laboratory experiment students will familiarize with micro-photoluminescence optical 

setup and the necessary optical devices for the detection and counting of photons. 

•  Students will observe the quantum nature of light and understand the underlying principle 

behind photon counting and fluctuations.  

• They will verify photon statistics for the demonstration of single-photon sources, coherent 

light and chaotic light sources. 

• Students will also familiarize with sample preparation techniques for single-molecule 

spectroscopy. 

 

1. Introduction 

When treating a beam of light as a stream of photons rather than a classical wave, the 

differences from classical predictions are often quite subtle. It requires careful observation to 

detect significant deviations from classical theories. In this experiment, we will explore the 

subject through the statistical properties of the photon stream. The basic principles of photon 

counting will be presented below, as discussed in Ref. [1], where further details can also be 

found. 

The detection of a light beam by a photon counter as illustrated in Figure 1. The photon 

counter consists of a very sensitive light detector such as an avalanche photodiode (APD) or 

photomultiplier tube (PMT) connected to an electronic counter. The detector produces short 

voltage pulses in response to the light beam and the counter registers the number of pulses 

that are emitted within a certain time interval set by the user. Photon counters thus operate in 

a very similar way to the Geiger counters used to count the particles emitted by the decay of 

radioactive nuclei. 

 

Figure 1. Detection of a faint light beam by a PMT or APD and pulse counting electronics [1]. 

 

The detector produces individual pulses for the impinging light beam that consists of a stream 

of discrete energy packets that we generally call ‘photons’. The fluctuations in the count rate 

would give information about the statistical properties of the incoming photon stream.  

In this kind of experiments one has to distinguish carefully between: 

(1) the statistical nature of the photo-detection process; 

(2) the intrinsic photon statistics of the light beam. 

 



4 
 

1.1 . Photon-counting statistics 

 

Here we want to answer two fundamental questions 1) Why photon number on short time-

scales fluctuates? 2) Is the fluctuation intrinsic or experimental problems? 

Let us consider the outcome of a photon-counting experiment as illustrated in Figure. 1. The 

basic idea is to count the number of photons that strike the detector in a user-specified time 

interval T. We start with the simplest case and consider the detection of a perfectly coherent 

monochromatic beam of angular frequency ω and constant intensity I. In the quantum picture 

of light, the beam to consist of a stream of photons. The photon flux Φ is defined as the average 

number of photons passing through a cross-section of the beam in unit time. Φ is easily 

calculated by dividing the energy flux by the energy of the individual photons: 

 

where A is the area of the beam and P is the power. 

Photon-counting detectors are specified by their quantum efficiency η, which is defined as the 

ratio of the number of photocounts to the number of incident photons. The average number of 

counts registered by the detector in a counting time T is thus given by: 

 

The corresponding average count rate R is given by: 

 

The maximum count rate that can be registered with a photon-counting system is usually 

determined by the fact that the detectors need a certain amount of time to recover after each 

detection event, which means that a ‘dead time’ of∼ 70 ns - 1 μs must typically elapse between 

successive counts. This sets a practical upper limit on R of around 106 counts s−1. With typical 

values of η for modern detectors of 30-70 % or more, the above equation shows that photon 

counters are only useful for analysing the properties of very faint light beams with optical 

powers of ∼ 10−12 W or less. The detection of light beams with higher power levels is done by 

a different method. 

The photon flux and the detector count rate equations given above represent the average 

properties of the beam. A beam of light with a well-defined average photon flux will 

nevertheless show photon number fluctuations at short time intervals. This is a consequence 

of the inherent ‘graininess’ of the beam caused by chopping it up into photons. We can see this 

more clearly with the aid of a simple example. Consider a beam of light of photon energy 2.0 

eV with an average power of 1 nW. Such a beam could be obtained by taking a He:Ne laser 

operating at 633 nm with a power of 1 mW and attenuating it by a factor 106 by using neutral 

density filters filters. The average photon flux is: 
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Since the velocity of light is 3×108 m/s, a segment of the beam with a length of 3×108 m would 

contain 3.1×109 photons on average. On a smaller scale, we would expect an average of 31 

photons within a 3 m segment of beam. In still smaller segments, the average photon number 

becomes fractional. For example, a 1-ns count time corresponds to a 30 cm segment of beam, 

and contains an average of 3.1 photons. Now photons are discrete energy packets, and the actual 

number of photons has to be an integer. We must therefore have an integer number of photons 

in each beam segment, as illustrated in Figure 2. In the next section we shall show that if we 

assume that the photons are equally likely to be at any point within the beam, then we find 

random fluctuations above and below the mean value. If we were to look at 30 such beam 

segments, we might therefore find a sequence of photon counts that looks something like: 

1, 6, 3, 1, 2, 2, 4, 4, 2, 3, 4, 3, 1, 3, 6, 5, 0, 4, 1, 1, 6, 2, 2, 6, 4, 1, 4, 3, 4, 6. Statistical analysis 

of this sequence, which is based on uniform random numbers, gives a sum of 95, a mean of 

3.16, and a standard deviation of 1.81. The statistical fluctuations arise from the fact that we do 

not know exactly where the photons are within the beam. 

 

Figure 2. A 30 cm section of a beam light at 633 nm with a power of 1 nW contains three 

photons on average [1]. 

 

If we make the length of the segments even smaller, the fluctuations become even more 

apparent. For example, in a 3 cm segment of beam corresponding to a time interval of 100 ps, 

the average photon number falls to 0.31. The majority of beam segments are now empty, and 

a sequence of 10 beam segments equivalent to any one of the 30 cm segments considered above 

might look like: 1, 0, 0, 1, 0, 0, 0, 0, 0, 1. This sequence has a sum of 3, a mean of 0.3, and a 

standard deviation of 0.46. It is apparent that the shorter the time interval, the more difficult 

it becomes to know where the photons are. Thus if we split the 30 cm beam segment shown in 

Figure 2 into 1000 intervals of 0.3 mm length and 1 ps duration, we would find that typically 

only three intervals contain photons, and 997 are empty. We have no way of predicting which 

three of these 1000 segments contain the photons. These examples show that although the 

average photon flux can have a well-defined value, the photon number on short time-scales 

fluctuates due to the discrete nature of the photons. These fluctuations are described by the 

photon statistics of the light. In the following sections, we shall investigate the statistical nature 

of various types of light, starting with the simplest case, namely a perfectly stable 

monochromatic light source. 
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1.2 . Coherent light: Poissonian photon statistics 

 

In classical physics, light is considered to be an electromagnetic wave. The most stable type of 

light that we can imagine is a perfectly coherent light beam which has constant angular 

frequency ω, phase φ, and amplitude E0: 

 

 

where E(x, t) is the electric field of the light wave and k =ω/c in free space. The beam emitted 

by an ideal single-mode laser operating well above threshold is a reasonably good 

approximation to such a field. The intensity I of the beam is proportional to the square of the 

amplitude, and is constant if E0 and φ are independent of time. There will therefore be no 

intensity fluctuations and the average photon flux defined earlier will be constant in time. 

It might be thought that a beam of light with a time-invariant average photon flux would consist 

of a stream of photons with regular time intervals between them. This is not in fact the case. 

We have seen above that there must be statistical fluctuations on short time-scales due to the 

discrete nature of the photons. We shall now show that perfectly coherent light with a constant 

intensity has Poissonian photon statistics. 

Consider a light beam of constant power P. The average number of photons within a beam 

segment of length L is given by 

 

where Φ is the photon flux. We assume that L is large enough that n ̅ takes a well-defined 

integer value. We now subdivide the beam segment into N subsegments of length L/N. N is 

assumed to be sufficiently large that there is only a very small probability p = n ̅/N of finding a 

photon within any particular subsegment, and a negligibly small probability of finding two or 

more photons. 

We now ask: what is the probability P(n) of finding n photons within a beam of length L 

containing N subsegments? The answer is given by the probability of finding n subsegments 

containing one photon and (N −n) containing no photons, in any possible order. This probability 

is given by the binomial distribution: 

 

which, with p = n ̅/N, gives 

 

We now take the limit as N →∞. To do this, we first rearrange the above equation 

in the following form: 
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 Now by using Stirling’s formula: 

 

we can see that 

 

Hence: 

 

Furthermore, by applying the binomial theorem and comparing the result for the limit N → ∞ 

to the series expansion of exp(−n), we can see that: 

 

On using these two limits, we find 

 

We thus conclude that the photon statistics for a coherent light wave with constant intensity are 

given by: 

 

This equation describes a Poisson distribution. Poissonian statistics generally apply to random 

processes that can only return integer values. 

Poisson distributions are uniquely characterized by their mean value n ̅. Representative 

distributions for n ̅ = 0.1, 1, 5, and 10 are shown in Figure 3. It is apparent that the distribution 

peaks at n ̅ and gets broader as n ̅ increases. The fluctuations of a statistical distribution about 

its mean value are usually quantified in terms of the variance. The variance is equal to the square 

of the standard deviation Δn and is defined by: 
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Figure 3. Poisson distributions for mean values of 0.1, 1, 5, and 10. Note that the vertical axis 

scale changes between each figure [1]. 

 

It is a well-known result for Poisson statistics that the variance is equal to the mean value n ̅ 

 

 

The standard deviation for the fluctuations of the photon number above and below the mean 

value is therefore given by: 

 

This shows that the relative size of the fluctuations decreases as n ̅ gets larger. If n ̅= 1, we have 

Δn = 1 so that Δn/n ̅= 1. On the other hand, if n ̅=100, we have Δn =10, and Δn/n ̅= 0.1. 

 

1.3 . Classification of light by Photon statistics 

 

In the previous section, we considered the photon statistics of a perfectly coherent light beam 

with constant optical power P. From a classical perspective, a perfectly coherent beam of 

constant intensity is the most stable type of light that can be envisaged. This therefore provides 

a bench mark for classifying other types of light according to the standard deviation of their 

photon number distributions. In general, there are three possibilities: 

• sub-Poissonian statistics: ∆n <  √n̅ 

• Poissonian statistics: ∆n =  √n̅ 
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• super-Poissonian statistics: ∆n >  √n̅ 

 

The difference between the three different types of statistics is illustrated in Figure 4. This figure 

compares the photon number distributions of super-Poissonian and sub-Poissonian light to that 

of a Poisson distribution with the same mean photon number. We see that distributions of super-

Poissonian and sub-Poissonian light are, respectively, broader or narrower than the Poisson 

distribution. 

 

Figure 4. Comparison of the photon statistics for light with a Poisson distribution, and those 

for sub-Poissonian and super-Poissonian light. The distributions have been drawn with the same 

mean photon number n ̅ = 100. The discrete nature of the distributions is not apparent in this 

figure due to the large value of n ̅ [1] . 

 

It is not difficult to think of types of light which would be expected to have super-Poissonian 

statistics. If there are any classical fluctuations in the intensity, then we would expect to observe 

larger photon number fluctuations than for the case with a constant intensity. Since a perfectly 

stable intensity gives Poissonian statistics, it follows that all classical light beams with time-

varying light intensities will have super-Poissonian photon number distributions. Sub-

Poissonian light, by contrast, has a narrower distribution than the Poissonian case and is 

therefore ‘quieter’ than perfectly coherent light. 

Now we have already emphasized that a perfectly coherent beam is the most stable form of 

light that can be envisaged in classical optics. It is therefore apparent that sub-Poissonian light 

has no classical counterpart, and is therefore the first example of non-classical light that we 

have met. The table below gives a summary of the classification of light according to the criteria 

established in this section. 

 

Sub-Poissonian light is defined by the relation: 

 

It is apparent from Figure 4 that sub-Poissonian light has a narrower photon number distribution 

than for Poissonian statistics. We have seen that a perfectly coherent beam with constant 
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intensity has Poissonian photon statistics. We thus conclude that sub-Poissonian light is 

somehow more stable than perfectly coherent light, which has been our paradigm up to this 

point. In fact, sub-Poissonian light has no classical equivalent. Therefore, the observation of 

sub-Poissonian statistics is a clear signature of the quantum nature of light. Even though there 

is no direct classical counterpart of sub-Poissonian light, it is easy to conceive of conditions 

that would give rise to sub-Poissonian statistics. Let us consider the properties of a beam of 

light in which the time intervals Δt between the photons are identical, as illustrated 

schematically in Figure 5. The photocount obtained for such a beam in a time T would be the 

integer value determined by: 

 

which would be exactly the same for every measurement. 

 

Figure 5. (a) A beam of light containing a stream of photons with a fixed time spacing Δt 

between them. (b) Photon-counting statistics for such a beam [1]. 

 

The experimenter would therefore obtain the histogram shown in Figure 5(b), with n ̅ = N. This 

is highly sub-Poissonian, and has Δn = 0. Photon streams of the type shown in Figure 5(a) with 

Δn = 0 are called photon number states. Other types of sub-Poissonian light can be conceived 

in which the time intervals between the photons in the beam are not exactly the same, but are 

still more regular than the random time intervals appropriate to a beam with Poissonian 

statistics. Such types of light are fairly easy to generate in the laboratory, although their 

detection is quite problematic. 

 

1.4 . Degradation of photon statistics by losses 

 

Another important point one should consider during photon statistics is issue related 

to optical losses.  

Let us suppose that we have a beam of light that passes through a lossy medium and is then 

detected as shown in Figure 6(a). If the transmission of the medium is T , then we can model 
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the losses as a beam splitter with splitting ratio T : (1 − T ), as indicated in Figure 6(b). The 

beam splitter separates the photons into two streams going towards its two output ports, so that 

only a fraction T of the incoming photons impinge on the detector and are registered as counts. 

Now the beam splitting process occurs randomly at the level of individual photons, with 

weighted probabilities for the two output paths of T : (1 − T ), respectively. We therefore see 

that the lossy medium randomly selects photons from the incoming beam with probability T . 

It is well known that the distribution obtained by random sampling of a given set of data is more 

random than the original distribution. This point is illustrated in Figure 6(c), which presents the 

case of a regular stream of photons split with 50 : 50 probability towards two output ports. It is 

apparent that the regularity of the time intervals in the photon stream going to the detector is 

reduced compared to the incoming photon stream. Thus the random sampling nature of optical 

losses degrades the regularity of the photon flux, and would eventually make the time intervals 

completely random for low values of T. 

 

Figure 6. (a) The effect of a lossy medium with transmission T on a beam of light can be 

modelled as a beam splitter with splitting ratio T : (1 − T ) as shown in (b). The beam splitting 

process is probabilistic at the level of the individual photons, and so the incoming photon stream 

splits randomly towards the two outputs with a probability set by the transmission: reflection 

ratio (50: 50 in this case) as shown in part (c) [1]. 

 

The beam splitter model of optical losses is a convenient way to consider the many different 

factors that reduce the efficiency of photon-counting experiments. These factors include: 

(1) inefficient collection optics, whereby only a fraction of the light emitted from the source is 

collected; 

(2) losses in the optical components due to absorption, scattering, or reflections from the 

surfaces; 

(3) inefficiency in the detection process due to using detectors with imperfect quantum 

efficiency 

All of these processes are equivalent to random sampling of the photons. The first one randomly 

selects photons from the source. The second randomly deletes photons from the beam. The third 

randomly selects a subset of photons to be detected. The first two degrades the photon statistics 
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themselves, while the third degrades the correlation between the photon statistics and the 

photoelectron statistics. Therefore, we must be very careful to avoid optical losses and use very 

high-efficiency detectors to observe large quantum effects in the photon statistics. 

 

1.5. Theory of photodetection 

Now that we are familiar with the different types of photon statistics that can occur, it is 

appropriate to consider the relationship between the counting statistics registered by the detector 

and the underlying photon statistics of the light beam. 

Let us consider a photon-counting detector such as an avalanche photodiode or photomultiplier 

illuminated by a faint light beam. The light interacts with the atoms in the the detector and 

liberates individual electrons by the photoelectric effect. These single photoelectrons then 

trigger the release of many more electrons in the multiplier region of the tube (as in the case of 

photomutiplier), thereby generating a current pulse of sufficient magnitude to be detected with 

an electronic counter.  

In this experiment a Single-Photon Avalanche Diode (SPAD) is used for the detection of 

photons. SPAD defines a class of photodetectors able to detect low intensity signals (down to 

the single photon) and to signal the time of the photon arrival with high temporal resolution 

(few tens of picoseconds). SPADs, like the Avalanche photodiode (APD), exploits the photon-

triggered avalanche current of a reverse biased p-n junction to detect an incident radiation. The 

fundamental difference between SPADs and APDs is that SPADs are specifically designed to 

operate with a reverse bias voltage well above the breakdown voltage (on the contrary APDs 

operate at a bias lesser than the breakdown voltage). This kind of operation is also called Geiger-

mode in literature, for the analogy with the Geiger counter. 

SPADs are semiconductor devices based on a p-n junction reversed biased at a voltage higher 

than the breakdown voltage. At this bias, the electric field is so high that a single charge carrier 

injected in the depletion layer can trigger a self-sustaining avalanche. The current rises swiftly 

(sub nanosecond rise-time) to a macroscopic steady level, in the milliampere range. If the 

primary carrier is photo-generated, the leading edge of the avalanche pulse marks (with 

picosecond time jitter) the arrival time of the detected photon. The current continues to flow 

until the avalanche is quenched by lowering the bias voltage down: the lower electric field is 

not able any more to accelerate the carriers to impact-ionize with lattice atoms, therefore current 

ceases. In order to be able to detect another photon, the bias voltage must be raised again above 

breakdown. These operations require a suitable circuit, which has to i) sense the leading edge 

of the avalanche current; ii) generate a standard output pulse synchronous with the avalanche 

build-up; iii) quench the avalanche by lowering the bias down to the breakdown voltage; iv) 

restore the photodiode to the operative level. This circuit is usually referred to as a quenching 

circuit. 

The SPADs that will be used in this experiment has specifications as shown in table 1. 
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Table 1. Specifications of SPADs (Micro Photon Devices). 

  

2. Second order correlation g(2)(τ ) and light sources 

In the previous section we classified light beams according to their photon statistics. We saw 

that the observation of Poissonian and super-Poissonian statistics could be explained by 

classical wave theory, but not sub-Poissonian statistics. Hence sub-Poissonian statistics is a 

clear signature of the photon nature of light. In this section we will look at a different way of 

quantifying light according to the second-order correlation function g(2)(τ ). This will lead to an 

alternative threefold classification in which the light is described as antibunched, coherent, or 

bunched. We shall see that antibunched light is only possible in the photon interpretation, and 

is thus another clear signature of the quantum nature of light. These effects were first 

investigated in detail by R. Hanbury Brown and R. Q. Twiss (HBT) in the 1950s [2], and their 

work has subsequently proven to be of central importance in the development of modern 

quantum optics.  

Figure 7(a) illustrates the experimental arrangement for a HBT experiment configured with 

single photon counting detectors. A stream of photons is incident on a 50 : 50 beam splitter, 

and is divided equally between the two output ports. The photons impinge on the detectors and 

the resulting output pulses are fed into an electronic counter/timer. The counter/timer records 

the time that elapses between the pulses from D1 and D2, while simultaneously counting the 

number of pulses at each input. The results of the experiment are typically presented as a 

histogram, as shown in Figure 7(b). The histogram displays the number of events that are 

registered at each value of the time τ between the start and stop pulses. 
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Figure 7. (a) Hanbury Brown–Twiss (HBT) experiment with a photon stream incident on the 

beam splitter. The pulses from the single-photon counting detectors D1 and D2 are fed into the 

start and stop inputs of an electronic counter/timer. The counter/timer both counts the number 

of pulses from each detector and also records the time that elapses between the pulses at the 

start and stop inputs. (b) Typical results of such an experiment. The results are presented as a 

histogram showing the number of events recorded within a particular time interval. In this case 

the histogram shows the results that would be obtained for a bunched photon stream [1]. 

 

Since the number of counts registered on a photoncounting detector is proportional to the 

intensity, one can write the second order correlation function of g(2)(τ ) as: 

 

where ni(t) is the number of counts registered on detector i at time t. This shows that g(2)(τ ) is 

dependent on the simultaneous probability of counting photons at time t on D1 and at time t + 

τ on D2. In other words, g(2)(τ ) is proportional to the conditional probability of detecting a 

second photon at time t = τ, given that we detected one at t = 0. This is exactly what the 

histogram from the HBT experiment with photoncounting detectors records. Hence the results 

of the HBT experiment also give a direct measure of the second-order correlation function 

g(2)(τ) in the photon interpretation of light. Keep in mind that this is valid only when the 

multiphoton probability is low. One important property of g(2)(τ ) for a light source is that its 

value does not change with loss as long as all modes experience the same loss (e.g., transmission 

through a beam splitter does not change the second order coherence). To gain more insight into 

the multi-photon probability and further information contained in the second order correlation 

function for pulsed and CW sources, one can find a detail in reference [3]. 

Now let us suppose that the incoming light consists of a stream of photons with long time 

intervals between successive photons. The photons then impinge on the beam splitter one by 

one and are randomly directed to either D1 or D2 with equal probability. There is therefore a 

50% probability that a given photon will be detected by D1 and trigger the timer to start 

recording. The generation of a start pulse in D1 implies that there is a zero probability of 

obtaining a stop pulse from D2 from this photon. Hence the timer will record no events at τ =0. 

Now consider the next photon that impinges on the beam splitter. This will go to D2 with 
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probability 50%, and if it does so, it will stop the timer and record an event. If the photon goes 

to D1, then nothing happens and we have to wait again until the next photon arrives to get a 

chance of having a stop pulse. The process proceeds until a stop pulse is eventually achieved. 

This might happen with the first or second or any subsequent photon, but never at τ =0. We 

therefore have a situation where we expect no events at τ =0, but some events for larger values 

of τ, which clearly contravenes the classical results. We thus immediately see that the 

experiment with photons can give results that are not possible in the classical theory of light. 

The observation of the non-classical result with g(2)(τ ) = 0 arose from the fact that the photon 

stream consisted of individual photons with long time intervals between them. Let us now 

consider a different scenario in which the photons arrive in bunches. Half of the photons are 

split towards D1 and the other half towards D2. These two subdivided bunches strike the 

detectors at the same time and there will be a high probability that both detectors register 

simultaneously. There will therefore be a large number of events near τ =0. On the other hand, 

as τ increases, the probability for getting a stop pulse after a start pulse has been registered 

decreases, and so the number of events recorded drops. We thus have a situation with many 

events near τ =0 and fewer at later times, which is fully compatible with the classical results. In 

general there are threefold classification of light according to the second-order correlation 

function g(2)(τ ). The classification is based on the value of g(2)(0 )and proceeds as follows: 

 

 

 

 

Figure 8. The second-order coherence function g(2) versus interphoton time  for antibunched, 

coherent (laser), and bunched (thermal) light sources. g(2)(0)=0 means that all the photons are 

separated in time [5]. 

This point is summarized in Figure 8 and table 2.  
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Table 2.  Classification of light according to the value of second-order correlation.  

 

Figure 9 is a simplistic attempt to illustrate the difference between the three different types of 

light in terms of the photons streams. The reference point is the case where the time intervals 

between the photons are random. On either side of this we have the case where the photons 

spread out with regular time intervals between them, or where they clump together in bunches. 

These three cases correspond to coherent, antibunched, and bunched light, respectively. In what 

follows below, we explore the properties of each of these three types of light in more detail, 

starting with coherent light. 

 

Figure 9. Comparison of the photon streams for antibunched light, coherent light, and bunched 

light. For the case of coherent light, the Poissonian photon statistics correspond to random time 

intervals between the photons [1]. 

 

2.1 Photon antibunching measurements  

 

A typical configuration to determine photon antibunching in a fluorescence signal, i.e., to 

measure the intensity autocorrelation function at short (ns) lag times, uses a regular confocal 

microscope scheme for excitation of the sample (see Figure 10). A CW-laser (532 nm 

wavelength, CPS 532 - Collimated Laser Diode Module, Thorlabs GmbH) is focused to a 

diffraction limited spot and the fluorescence from the sample is collected by the same objective 

as used for illumination. The laser light is separated from fluorescence photons by a dichroic 

mirror and further spectrally filtered using two long pass filters that have cut-on wavelength at 

550 nm (FELH0550, Thorlabs GmbH) to suppress the scattered laser light. A confocal pinhole 

of 50 µm diameter selects the focal plane of the emitter and gets rid of the unwanted background 

signal. A flippable reflecting mirror that is placed along the optical axis of the setup sends the 

fluorescence signal to the imaging camera. Imaging helps to identify the quantum emitters and 

align them along the optical axis for detection as shown in Figure 11(a). The spectrometer 

(Flame-S-VIS-NIR-ES, Ocean Optics GmbH) is used to investigate the spectral feature of the 

emitters (Figure 11(b)). A 50/50 non-polarizing beam splitter sends the emitted photons to the 

two single-photon avalanche photodiodes (SPADs) (Micro Photon Devices, 100 µm active area, 
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< 50 ps jitter and < 250 cps dark count). These detectors are connected to the start-stop time-

interval analyzer of a time-correlated single photon counter (TCSPC) (TimeHarp 260 Nano, 

PicoQuant GmbH) and the delay between the arrival times of two emitted photons will be 

repeatedly measured and histogrammed with 250 picosecond time resolution to determine the 

photon statistics. Note that the technical note [4] gives a theoretical overview about Time-

Correlated Single Photon Counting (TCSPC). It provides information about basic principles 

such as count rate statistics, timing resolution and the characteristics of photon counting 

detectors. 

Figure 12 shows the complete experimental setup. The right side of Figure 12 depicts the HBT 

interferometer used in this experiment.  

To experimentally determine the autocorrelation function, the fluorescence intensity should be 

explored over large time scales. One can rewrite the autocorrelation function (equation 1) in 

terms of fluorescence intensity I(t) and ensemble averaging <> as: 

 

Both the time analyser and the correlator give numbers of coincidence counts n(τ) as a function 

of the time delay between photons. The normalized autocorrelation function can be deduced by 

calculating g(2)(τ) = n(τ)/IAIB∆tT, where IA and IB are the mean intensities on the start and stop 

channels, ∆t the time resolution and T the total acquisition time. 

The histogram of coincidence counts at short time scale shows a dip centered at τ= 0. The dip 

can be described by an exponential curve as: 

                                   g(2)(τ) = a(1 − beτ/τ0)                                                                               (3) 

For an excitation intensity I well below the saturation limit, the value of τ0 is essentially 

determined by the excited state lifetime. 

 

Figure 10. Schematic of the optical setup for measuring the photon statistics of different light 

sources. 
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Figure 11. (a) Fluorescence image of QDs. (b) Emission spectrum of QDs excited with 532 nm 

laser. 

 

 

Figure 12. Experimental setup for measuring the second order correlation g(2)(τ ) of different 

light sources. 

Antibunching has been observed from many types of light emitters, including a number of solid-

state sources, such as: 

• fluorescent dye molecules doped in a glass or crystal; 

• semiconductor quantum dots; 

• colour centres in diamonds. 

In this experiment we will use semiconductor quantum dots as a single photon source. In the 

following their properties will be introduced. 

2.2 Quantum dots as a single photon source 

Quantum dots (QDs) are semiconductor nanoparticles that exhibit size dependent optical and 

electronic properties due to quantum confinement effects. In recent years they are a central topic 

in nanotechnology due to their applications as single-photon sources, solar cells, LEDs, Lasers, 

quantum computing and medical imaging. 

When the quantum dots are illuminated by light, an electron in the quantum dot can be excited 

to a state of higher energy. That corresponds to the transition of an electron from the valance 
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band to the conduction band. The excited electron drop back into the valence band by the 

releasing the energy in the form of light (photons). This light emission (the so called 

photoluminescence) is illustrated in Figure 13(a). The color (wavelength) of the emitted light 

depends on the size of the QDs. This is due to size dependant bandgap modification of the 

nanocrystals. Larger QDs (more than 5 nm diameter) emit at longer wavelengths (e.g., colors 

such as orange or red). Smaller QDs of size between 2–5 nm usually emit shorter wavelengths 

(e.g., colors like blue and green) as shown in Figure 13(b). However, the specific colors vary 

depending on the exact composition of the QD. In this experiment we will use colloidally 

synthesized CdSe/ZnS QDs. 

 

Figure 13. (a) Excitation of an electron by a laser light followed by fluorescence emission from 

a QD. (b) The color (wavelength) of the emitted light depends on the size of the QDs (Sigma-

Aldrich GmbH). 

3. Experimental background and Procedures 

In the following the experimental procedure for sample preparation and optical measurements 

will be presented. 

3.1 Sample preparation: The CdSe/ZnS (core/shell) quantum dot is in a powder form and it is 

highly luminescent semiconductor nanocrystal coated with hydrophobic organic molecules. 

Therefore, it is readily soluble in heptane, toluene, chloroform but not soluble in water, alchols 

and ethers. The diameter of CdSe is 4.9 nm and its shell has 0.6 nm thickness. The QD solution 

can be prepared using one of the mentioned solvent and drop casted or spin coated on a cover 

slide. The distribution of the QDs on the cover slides should be made in such a way that one 

obtains one QD in 1 µm2 . Let us call this distribution as “single emitter distribution” and follow 

the following procedure for the preparation of your sample. 

1. Use 0.5 mg of QDs powder to determine the concentration of QD solution you need for 

single emitter distribution. This can be done first by calculating the Molarity of the 

solution. Molarity is the most common term to describe the concentration of a solution. 

It is equal to the mole of solute divided by the liters of solution. The solute is defined as 

the substance being dissolved (QDs), while the solvent is the substance where the solute 

is dissolved (toluene). Remind that the number of moles of solute is equal to mass of 

solute divided by molar mass of solute. Before preparing the solution (putting the QDs 

in to the solvent) please show your calculations and discuss how much solvent you need 

to obtain single emitter distribution. 

2. After the preparation of the solution, drop cast the QDs solution on a cover slip. Prepare 

2 samples using this technique. 
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3. Use another 2 cover slip and spin coat the QDs solution. The parameters for spin coating 

will be provided by the supervisor. 

Remind that sample preparation will be performed after you get training on how to work in the 

chemistry laboratory. Solution preparation, drop casting and spin coating techniques will also 

be introduced to you.  

3.2 Optical measurements: Optical characterization of the sample (QDs on a cover slip) is 

performed using micro-photoluminescence setup as discussed in session 2.1. After putting the 

sample on the sample stage and determining the polarization of the laser and its power, follow 

the following procedures. 

1. Using the neutral density filter decrease the laser power and excite the sample. Use the 

camera to identify the emitters and align precisely along the optical axis for detection.  

2. Measure the fluorescence spectrum using the spectrometer. 

3. Use the HBT interferometer configured with single photon counting detectors to record 

the number of events that are registered at each value of the time τ between the start and 

stop pulses.   

4. Explain why the second order correlation function measurement for a single QD deviate 

from the ideal g(2)(0) = 0  result. Use equation (3) to fit the measured second order 

correlation function. 

5. Finally, chaotic and coherent light sources will be provided and determine their photon 

statistics and measure the second order correlation function. Compare the result with 

single QD measurement and discuss their difference. 

 

3.3 Data Analysis and report format 

A good lab report does more than presenting data; it demonstrates the writer’s comprehension 

of the concepts behind the data. Merely recording the expected and observed results is not 

sufficient; you should also identify how and why differences occurred, explain how they 

affected your experiment, and show your understanding of the principles the experiment was 

designed to examine. Bear in mind that a format, however helpful, cannot replace clear thinking 

and organized writing. You still need to organize your ideas carefully and express them 

coherently. 

Typical components to be fulfilled are: Title Page, Abstract, Introduction, Methods and 

Materials (or Equipment), Experimental Procedure, Results, Discussion, Conclusion, 

References. 
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