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Problem 1

Many Processes involve the absorption of single photons from quantum field state, the process
of absorption being represented by the action of the annihilation operator â. For an arbitrary
field state |ψ〉, the absorption of a single photon yields the state |ψ′〉 ≈ â |ψ〉. Normalize this
state. Compare the average photon numbers n̄ of the state |ψ〉 and n̄′ of |ψ′〉. Do you find that
n̄′ = n̄− 1 ?
For an arbitrary field state |ψ〉, the absorption of a single-photon yield the state

as: ∣∣ψ′〉 ≈ â |ψ〉
or 〈

ψ′
∣∣ ≈ 〈ψ| â†

Normalization of this state: ∣∣ψ′〉 = C |ψ〉〈
ψ′
∣∣ψ′〉 = |C|2 〈ψ| â†â |ψ〉 = 1

but
〈ψ| â†â |ψ〉 = n̄

where n̄ is the mean photon number of the state |ψ〉. Hence:

〈ψ|ψ〉 = |C|2n̄ = 1 =⇒ C =
1√
n̄

Now one can write the new state as: ∣∣ψ′〉 =
1√
n̄
|ψ〉

The mean photon number of this state is given as:

n̄′ =
〈
ψ′
∣∣ n̂ ∣∣ψ′〉 =

1

n̄
〈ψ| â†â†ââ |ψ〉

Remind that [a, â†] = 1 and using n̂ = â†â, one can write :

n̄′ =
1

n̄

[
〈ψ| n̂2 |ψ〉 − n̄

]
For a pure state (Fock state)|n〉,< n̂2 >=< n̂2 >= n̄2, hence n̄′ = n̄ − 1, but for the other

states n̄′ 6= n̄− 1.

Problem 2

Consider the superposition of the vacuum and 10 photon number state

|ψ〉 =
1√
2

(
|0〉+ |10〉

)
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Calculate the average photon number for this state. Next, assume that a single photon is
absorbed and recalculate the average photon number. Does your result seem sensible in com-
parison with your answer to the previous question ?
The quantum state is the superposition of the vacuum state and the 10 photon

number state. Thus:
|ψ〉 =

1√
2

(
|0〉+ |10〉

)
The average photon number n̄ for this state is given as:

n̄ =< n̂ >= 〈ψ| â†â |ψ〉

n̄ =
1

2

[
〈0| â†â |0〉+ 〈10| â†â |10〉

]
=

1

2
× 10 = 5 =⇒ n̄ = 5

If we assume a single photon is absorber, our normalized state can be transformed
as: |ψ′〉 = |9〉, and its mean photon number will be as follows:

n̄′ =< n̂ >=
〈
ψ′
∣∣ â†â ∣∣ψ′〉 = 9

Remind that the first state was the superposition and we only have 1/2 probability to be in
the 10 photon number state. After the absorption we consider only a number state.

Problem 3

Show that the amplitude of the fluctuation (∆pn∆qn) of number (Fock) state increases with
increasing photons in the state.
We know that:

n̂ |n〉 = n |n〉

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉

and,
〈n|m〉 = δnm

The fluctuation of the photon number , ∆n =
√
< n2 > − < n̂ >2, for a Fock state takes the

form:
< n̂2 >= 〈n| n̂2 |n〉 = n̄2

and ,
< n̂2 >= n̄2

hence,
(∆n)2Fock = 0

This tells that ∆n<
√
n̄ =⇒ Poissonian statistics, it has no classical electrodynamic theory

(non-classical light).

The light emitters with a Fock state n = 1 are single-photon sources. Since they can only
emit one photon at a time, the photon number probability looks as shown in the figure below:
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Now, the question is to find the amplitude fluctuation.
We know that momentum and the co-ordinate operators are defined as:

p̂ = i

√
h̄ω

2
(â† − â)

q̂ =

√
h̄

2ω
(â† + â)

∆pn =

√
p̄2 − p̄2

∆qn =

√
q̄2 − q̄2

Since its a Fock state,

p̄ = 〈n| p̂ |n〉 = i

√
h̄ω

2

[
〈n| â† |n〉 − 〈n| â |n〉

]
= 0

q̄ = 〈n| q̂ |n〉 = i

√
h̄

2ω

[
〈n| â† |n〉+ 〈n| â |n〉

]
= 0

However,
p̄2 = 〈n| p̂2 |n〉

Where,

p̄2 = 〈n| p̂2 |n〉 =
h̄ω

2
[2n+ 1]

Similarly,

q̄2 = 〈n| q̂2 |n〉 =
h̄

2ω
[2n+ 1]

Therefore:

∆p =

√
p̄2 − p̄2 =

√
h̄ω

2
(2n+ 1)

∆q =

√
q̄2 − q̄2 =

√
h̄

2ω
(2n+ 1)

Thus we have :
∆pn∆qn =

h̄

2
(2n+ 1)

The amplitude of the fluctuation increases with increasing the number of photons in the state.
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Problem 4

Show that the uncertainity ∆pα∆qα of coherent state is independent of the number of photons
and is equal to the vacuum state uncertainity.
A coherence state |α〉 is an eigen state of annihilation operator â |α〉 = α |α〉.

Since,

p̂ = i

√
h̄ω

2
(â† − â)

and,

q̂ =

√
h̄

2ω
(â† + â)

We find that:

p̄ = 〈α| p̂ |α〉 = i

√
h̄ω

2

[
〈α| â† |α〉 − 〈α| â |α〉

]

p̄ = i

√
h̄ω

2
[α∗ − α] = 2

√
h̄ω

2
Im{α}

Similarly we have:

q̄ = 〈α| q̂ |α〉 =

√
h̄

2ω

[
〈α| â† |α〉+ 〈α| â |α〉

]

q̄ =

√
h̄

2ω
[α∗ + α] = 2

√
h̄

2ω
Re{α}

and,

p̄2 = − h̄ω
2
〈α| â†2 − â†â− ââ† + â2 |α〉

hence we have:
p̄2 = − h̄ω

2
[(α∗)2 − 2αα∗ − 1 + α2] =

h̄ω

2
[4 Im{α+ 1}]

Similarly,

q̄2 =
h̄

2ω
〈α| â†2 + â†â+ ââ† + â2 |α〉

q̄2 =
h̄

2ω
[(α∗)2 + 2αα∗ + 1 + α2] =

h̄ω

2
[4 Re{α+ 1}]

These leads to,

∆pα =

√
p̄2 − p̄2 =

√
h̄ω

2

and,

∆qα =

√
q̄2 − q̄2 =

√
h̄

2ω

∆pα∆qα =

√
h̄ω

2

√
h̄

2ω
=
h̄

2

Hence the uncertainity fluctuation of coherent state isindependent of the number of photons
and is equal to the vacuum state. A laser working well above its threshold can be an example.
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Problem 5

Verify that the transmission of light through a beamsplitter of arbitrary loss does not change
the second-order coherence.
The second order correlation of a single photon source is given by:

g(1)(τ) =
< â†(t)â†(t+ τ)â(t+ τ)â(t) >

< â†(t)â(t) >2

The loss can be modelled as the transmission through a lossless beamsplitter with arbitrary
reflection and transmittance.
The input and the output destruction operators can be written as:

â3 = Râ1 + T â2

â4 = T â1 +Râ2

The electricfielf reflection and transmission coefficients R and T are complex numbers. One
can write the above equation as: (

â3
â4

)
=

(
R T
T R

)(
â1
â2

)
The element of the beam splitter transformation matrix M is unitary. Which imples thta,

M−1M = M+M = 1

or
M−1 = M+

Hence ,
|R|2 + |T |2 = 1

and,
R∗T + T ∗R = 0
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One can write for example:

g(44)(0) =
< â4

†â4
†â4â4 >

< â4
†â4 >2

g(44)(0) = |T |4< â†(t)â†(1)â(1)â(t) >

|τ |2|τ |2 < â†(t)â(t) >2
= g(33)(0) = g(11)(0)

Hence second order coherence of the transmitted and reflected fields are equal to that of the
incident light. Which implies that the g(2) can be measured accurately in an optical system
that has low transmission or low extraction efficiency.

Problem 6

Consider a single photon source that emits photons at a rate of 107s−1 and has a g(2)(0) = 0.25.

• Determine the probability of the source emitting one or more photons over a time interval
of 1 ns.

• Determine the two photon probability for the same interval.

We know that:

g(1)(τ) =
< â†(t)â†(t+ τ)â(t+ τ)â(t) >

< â†(t)â(t) >2

g(2)(0) =
< â†â†ââ >

< â†â >2
=
< n̂(n̂− 1) >

< n̂ >2
=

Tr
{
ρ̂n̂( ˆn− 1)

}(
Tr{ρ̂n̂}

)2
Only the diagonal terms of the density matrix contribute to g(2)(0). Hence,

g(2)(0) =

∑∞
n=0 n(n− 1)P (n)[∑∞

n=0 nP (n)
]2 =

2P (2) + 6P (3) + ...........

n̄2

Where, n̄ is the mean photon number. In the case where P (1) >> P (2) >> P (n > 2), which
is true for most single photon sources.

g(2)(0) =
2P (2)

n̄2
=

2P (2)

[P (1)]2

Note that g(2)(0) does not directly reflect the two ; one photon ratio (P (2)/P (1)), but it is a
relevant quantity to show the source quality.
Since the source under consideration is a single photon source that emits photons at a ratio of
R = 107s−1 and has g(2)(0) = 0.25, the probability of the source emitting one or more photon
over a time interval of 1 ns can be find as:

P (n > 0) = 10−9s× 107s−1 = 10−2

With this low probability, we can approximate P (1) ' P (n > 0) and P (2) ' 1
2g

(2)(0)[P (1)]2 '
1
2 × 0.25× 10−4 = 1.25× 10−5.
The two to one photon ratio is :

P (2)

P (1)
' 1.25× 10−5

10−2
' 1.25× 10−3
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